APPENDIX A ENVIRONMENTAL PERFORMANCE STANDARDS AS AMENDED ON APRIL 6, 2017

ENVIRONMENTAL PERFORMANCE STANDARDS APRIL 6, 2017

For Massachusetts National Guard Properties at the Massachusetts Military Reservation

CAMP EDWARDS TRAINING AREA GENERAL PERFORMANCE STANDARDS

None of the following banned military training activities shall be allowed in the Camp Edwards Training Areas:

-Artillery live fire

-Mortar live fire

- -Demolition live fire training
- -Artillery bag burning
- -Non-approved digging, deforestation or vegetation clearing
- -Use of 'CS', riot control, or tear gas for training outside the NBC bunkers
- -Use of field latrines with open bottoms
- -Vehicle refueling outside designated Combat Service Area and Fuel Pad locations

-Field maintenance of vehicles above operator level

Limitations on the use of small arms ammunition and live weapon fire fall into the following two categories:

- Live weapon fire is prohibited outside of established small arms ranges. Live weapon fire is not allowed on established small arms ranges except in accordance with Environmental Performance Standard 19, other applicable Performance Standards, and a range-specific plan approved through the Environmental Management Commission (EMC).

- Blank ammunition for small arms and simulated munitions may be used in areas outside of the small arms ranges, using only blank ammunition and simulated munitions identified on an approved list of munitions. Joint review and approval for inclusion on the list shall be through by the Environmental & Readiness Center (E&RC) and the EMC.

Each user will be responsible for proper collection, management, and disposal of the wastes they generate, as well for reporting on those actions.

Use and application of hazardous materials or disposal of hazardous waste shall be prohibited except as described in the Groundwater Protection Policy.

Vehicles are only authorized to use the existing network of improved and unimproved roads, road shoulders, ranges and bivouac areas, except where necessary for land rehabilitation and management, water supply development, and remediation, or where roads are closed for land rehabilitation and management.

Protection and management of the groundwater resources in the Camp Edwards Training Area will focus on the following:

- Development of public and Massachusetts Military Reservation water supplies.
- Preservation and improvement of water quality and quantity (recharge).
- Activities compatible with the need to preserve and develop the groundwater resources.

All users of the Camp Edwards Training Area must comply with the provisions of the Groundwater Protection Policy and any future amendments or revisions to the restrictions and requirements. These will apply to all uses and activities within the overlays relative to Wellhead Protection, Zone II's within the Cantonment Area, and the Camp Edwards Training Areas.

Development of water supplies will be permitted within the Camp Edwards Training Area after review and approval by the managing agencies, principally the Department of the Army and its divisions, together with the Massachusetts Department of Environmental Protection, and the Massachusetts Division of Fish and Wildlife.

All phases of remediation activities will be permitted within the Camp Edwards Training Area after review and approval by the managing agencies, principally the Department of the Army and its divisions, together with the federal and state agencies who will have jurisdiction for remediation.

Pollution prevention and management of the Camp Edwards training ranges will focus on and include the following:

The Camp Edwards Training Area, including the Small Arms Ranges (SAR) and their associated "Surface Danger Zones," and any areas where small arms or other munitions or simulated munitions are used, shall be managed as part of a unique water supply area under an adaptive management program that integrates pollution prevention, and best management practices (BMP), including the recovery of projectiles. This will be done through individual range-specific plans that are written by the Massachusetts National Guard and approved for implementation through the EMC and any other regulatory agency having statutory and/or regulatory oversight. Adaptive, in this context, means making decisions as part of a continual process of monitoring, reviewing collected data, evaluating advances in range monitoring, design and technology, and responding with management actions as dictated by the resulting information and needs of protecting the environment while providing compatible military training within the Upper Cape Water Supply Reserve.

A range plan shall be designed and followed to reduce the potential for an unintended release to the environment outside of the established containment system(s) identified in the range-specific plans. All users must be aware of, and comply with, the Environmental Performance Standards that are applicable to all SAR activities. Any range specific requirements will be coordinated through the E&RC with the EMC, incorporating those specific requirements into the appropriate range-specific plans and range information packets. Camp Edwards SAR Pollution Prevention Plan shall be followed to prevent or minimize releases of metals or other compounds related to the normal and approved operation of each SAR. The adaptive SAR management program components required in each range-specific plan shall include:

- Consultation with applicable agencies with oversight of the training area before undertaking any actions that are subject to state and/or federal regulatory requirements.
- Specific recovery plans for the removal and proper disposition of spent projectiles, residues and solid waste associated with the weapons, ammunition, target systems, and/or their operation and maintenance.
- Reduction of adverse impacts to the maximum extent feasible, including consideration for the design/redesign and/or relocation of the activity or encouraging only those activities that result in meeting the goal of overall projectile and/or projectile constituent containment.
- Internal and external coordination of documentation for the Camp Edwards range management programs and other related Camp Edwards management programs including: the Integrated
- Training Area Management Program, Range Regulations, Camp Edwards Environmental Management System, Civilian Use Manual, and Standard Operating Procedures.
- Long-term range maintenance, monitoring and reporting of applicable parameters and analysis.

The Massachusetts National Guard shall ensure that all training areas where munitions or simulated munitions are used or come to be located, including range areas, range surface danger zones, and any other areas within the Upper Cape Water Supply Reserve that are operational ranges are maintained and monitored following approved management plans that include planning for pollution prevention, sustainable range use and where applicable, restoration.

Protection and management of the vegetation of the Camp Edwards Training Area for focus on the following:

- Preservation of the habitat for federal- and state-listed rare species and other wildlife.
- Preservation of the wetland resource areas.
- Activities compatible with the need to manage and preserve the vegetative resources.
- Realistic field training needs.
- Identification and restoration of areas impacted by training activities.

Goals for the Adaptive Ecosystem Management approach to management of the Camp Edwards properties will be as follows:

- Management of the groundwater for drinking water resources
- Conservation of endangered species.
- Management of endangered species habitat for continuation of the species.
- Ensuring compatible military training activities.
- Allowing for compatible civilian use.
- Identification and restoration of areas impacted by training activities.

The Environmental Performance Standards will be incorporated into the programs and regulations of the Massachusetts National Guard as follows. Those standards relating to natural resources management shall be incorporated as standards into each of the state and federal environmental management programs and attached as an appendix or written into the documentation accompanying the plan or program. All the Environmental Performance Standards will be attached to the Integrated Training Area Management Plan 'Trainer's Guide' and to the Camp Edwards Range Regulations. Modification of the Standards Operating Procedures will include review and conformance with the Environmental Performance Standards for trainers and soldiers at Camp Edwards.

SPECIFIC RESOURCE PERFORMANCE STANDARDS IN THE CAMP EDWARDS TRAINING AREA

1. Groundwater Resources Performance Standards

1.1. All actions, at any location within the Camp Edwards Training Areas, must preserve and maintain groundwater quality and quantity, and protect the recharge areas 1:0 existing and potential water supply wells. All areas within Camp Edwards Training Areas will be managed as State Zone U, and, where designated, Zone I, water supply areas.

1.2 The following standards shall apply to designated Wellhead Protection Areas:

- The 400-foot radius around approved public water supply wells will be protected from all access with signage. That protection will be maintained by the owner and/or operator of the well, or the leaseholder of the property.
- No new stormwater discharges may be directed into Zone I areas.

- No in ground septic system will be permitted within a Zone I area.
- No solid wastes may be generated or held within Zone I areas except as incidental to the construction, operation, and management of a well.
- Travel in Zone I areas will be limited to foot travel or to vehicles required for construction, operation, and maintenance of wells.
- No new or existing bivouac activity or area shall be located within a Zone I area.
- All other areas will be considered as Zone II designated areas and will be subject to the standards of the Groundwater Protection Policy.

1.3 Land-use activities that do not comply with either the state Wellhead Protection regulations (310 CMR 22.00 et seq.) or the Groundwater protection Policy are prohibited.

1.4 All activities will suppol and not interfere with either the Impact Area Groundwater Study and/or the Installation Restoration Program. All activities shall conform to the requirements of Comprehensive Environmental Response, Compensation and Liability Act, the Massachusetts Contingency Plan, and the Safe Drinking Water Act.

1.5 Extraction, use, and transfer of the groundwater resources must not de- grade [e.g. draw down surface waters] in freshwater ponds, vernal pools, wetlands, and marine waters, unless properly reviewed, mitigated, and approved by the managing and regulating agencies.

1.6 Land uses and activities in the Camp Edwards Training Areas will meet the following standards:

- Will conform to all existing and applicable federal, state and local regulations.
- Must be able to be implemented without interference with ongoing remediation projects.
- Allow regional access to the water supplies on the Massachusetts Military Reservation.

1.7 The following programs and standards will be used as the basis for protecting groundwater resources in the Camp Edwards Training Areas:

- Groundwater Protection Policy.
- Federal and Department of Defense environmental programs: Integrated Natural Resources Management Plan, Integrated Training Area Management Program, Range Regulations, Spill Prevention Control and Countermeasures Plan (or equivalent), Installation Restoration *Plan*, Impact Area Groundwater Study, or other remediation programs.
- State and federal laws and regulations pertaining to water supply.

2. Wetlands and Surface Water Performance Standards

2.1 Since there are relatively few wetland resources found at the Massachusetts Military Reservation, and since they are important to the support of habitat and water quality on the properties, the minimum standard will be no net loss of any of the wetland resources or their 100-foot buffers.

2.2 Land uses and activities will be managed to prevent and mitigate new adverse impacts and eliminate or reduce existing conditions adverse to wetlands and surface water resource areas. Impacts from remediation activities may be acceptable with implementation of reasonable alternatives.

2.3 Wetland area management priorities:

- Protection of existing; wetland resource areas for their contributions to existing and potential drinking water supplies.
- Protection of wetlands for rare species and their habitats.
- Protection of human health and safety.

2.4. Activities will be managed to preserve and protect wetlands and vernal pools as defined by applicable, federal, state, and local regulations. These activities will include replacement or replication of all wetland resource buffer areas, which are lost after completion of an activity or use.

2.5 All land altering activities within 100 feet of a certified vernal pool must be reviewed before commencement by the Massachusetts Department of Environmental Protection/Wetlands Unit and the Natural Heritage and Endangered Species Program within the Division of Fish and Wildlife for impacts to wildlife and habitat. The certification of vernal pools will be supported by the on site personnel and will proceed with the assistance of the appropriate state agencies.

2.6 All new uses or activities will be prohibited within the wetlands and their IOO-foot buffers, except those associated with an approved habitat enhancement or restoration program; those on existing improved and unimproved roads where appropriate sediment and erosion controls are put in place prior to the activity; or those where no practicable alternative to the proposed action is available. No new roads should be located within the 100-foot buffers. Existing roads within such buffers should be relocated provided that:

- The relocation does not cause greater environmental impact to other resources.
- There are funds and resources allocated for resource management and that those resources are approved and available for the relocation.

2.7 During the period of 15 February to 15 May, listed roads/trails within 500 feet of wetlands will be closed to vehicle access to protect the migration and breeding of amphibians. Emergency response and environmental management activities will not be restricted.

- Donnelly and Little Halfway Ponds maneuver trails (excluding the permanently closed section along the eastern edge of Donnelly Pond) from Frank Perkins Road north to Wood Road
- Red Maple Swamp trail from Wood Road north and east to Avery Road
- Orchard and Jefferson Roads (continuous) from Cat Road south and east to Burgoyne Road
- Maneuver trail(s) in powerline easement north of Gibbs Road from Goat Pasture Road west to the boundary of training areas C-13 and C-14
- Grassy Pond trail (side access to Sierra Range) from Gibbs Road south to Sierra Range
- Sandwich Road from the powerline easement north to the gas pipeline right of way
- Bypass Bog/Mike Range Road from entrance to Mike Range south and west to Greenway Road

2.8 No new bivouac area shall be located within 500 feet of any wetland. Any existing bivouac within a wetland buffer shall be relocated provided there are funds and resources allocated for the relocation.

3. Rare Species Performance Standards

3.1 As the Natural Heritage and Endangered Species Program of the Massachusetts Division of Fisheries & Wildlife has identified the entire Massachusetts Military Reservation as State Priority Habitat for state-listed species (version dated 2000-2001), all activities and uses must comply with the Massachusetts Endangered Species Act and its regulations.

3.2 Where activities and uses are not specifically regulated under the Camp Edwards Training Area Range and Environmental Regulations, including these Environmental Performance Standards, the MMR Environmental and Readiness Center must review the activities for conformance with the Integrated Natural Resource Management Plan, and shall- consult with the Natural Heritage and Endangered Species Program regarding potential impacts to state-listed species.

3.3 All activities impacting rare species habitat must be designed to preserve or enhance that habitat as determined by the MMR Environmental and Readiness Center in consultation with the Natural Heritage and Endangered Species Program.

3.4 Users are prohibited from interfering with state and federal listed species.

3.5 Users will report all sightings of recognized listed species, e.g. box turtles, within any area of the Massachusetts Military Reservation.

4. Soil Conservation Performance Standards

4.1 Activities and uses must be compatible with the limitations of the underlying soils. Limitations on uses and activities may be made where the soils or soil conditions would not support the activity.

4.2 Agricultural soil types will be preserved for future use.

4.3 Any perennial or intermittent stream identified by the Environmental & Readiness Center Office will be protected from siltation by retaining undisturbed vegetative buffers to the extent feasible.

4.4 Cultural resource evaluations must be completed before any earth-moving operation may take place in undisturbed areas with high potential for cultural resources, and earth moving may be limited to specific areas (See Cultural Resource Performance Standards).

4.5 An erosion control analysis will be made part of the land management programs (Integrated Natural Resource Management Plan, the Integrated Training Area Management Program, Range Regulations, Civilian Use, and Standard Operating Procedures) for the Camp Edwards Training Area, including appropriate mitigation measures where existing or potential erosion problems are identified.

4.6 For all improved and unimproved roads, ditches and drainage ways:

- All unimproved roads, ditches, roads and drainage ways identified for maintenance will be cleaned of logs, slash and debris.
- Unimproved roads and roads may not otherwise be improved unless approved for modification.
- Any trail, ditch, road, or drainage way damaged by activities will be repaired in accordance with the hazard and impact it creates.

4.7 Erosion-prone sites will be inspected periodically to identify damage and mitigation measures.

5. Vegetation Management Performance Standards

5.1 All planning and management activities impacting vegetation

- Will ensure the maintenance of native plant communities, and
- Shall be performed to maintain the biological diversity.

5.2 Revegetation of disturbed sites will be achieved by natural and artificial recolonization by native species.

5.3 Timber harvesting or clear-cutting of forested areas should not occur on steep slopes with unstable soils or with in the buffers to wetland resources.

5.4 Vegetation management will be subject to a forest management and fire protection program prepared by the users in accordance with federal standards, and carried out in a manner acceptable to the Massachusetts Military Reservation Committee and other state agencies or commissions, as may be designated by the Commonwealth of Massachusetts.

6. Habitat Management Performance Standards

6.1 The Camp Edwards Training Area will be managed as a unique rare species and wildlife habitat area under n adaptive ecosystem management program that integrates ecological, socio-economic, and institutional perspectives, and which operates under the following definitions:

- Adaptive means making decisions as part of a continual process of monitoring, reviewing collected data, and responding with management actions as dictated by the resulting information and needs of the system.
- Ecosystem means a system-wide understanding of the arrangements of living and non-living things, and the forces that act upon and within the system.
- Management entails a multi-disciplinary approach where potentially competing interests are resolved with expert analysis, user and local interest considerations, and a commitment to compromise interests when the broader goal is achieved to manage the Camp Edwards Training Area as a unique wildlife habitat area.

6.2 The adaptive ecosystem management program will include:

- Coordinated documentation for the management programs, Integrated Natural Resource Management Plan, the Integrated Training Area Management Program, Range Regulations, Civilian Use, and Standard Operating Procedures.
- The Massachusetts National Guard Environmental and Readiness Center staff and necessary funding to support its ecosystem management plans, as related to the amount of training occurring.
- Cooperative agreements to create a management team of scientific and regulatory experts.
- Long-term land maintenance, monitoring of resources and trends, study and analysis.
- Recovery plans for species and habitats identified for improvement.
- Consultation with Federal and State agencies charged with oversight of the Endangered Species Program before any actions that may affect state and federal-listed species habitat.
- Reduction of adverse impacts to the maximum extent possible, including consideration for the relocation of the activity or encouraging only those activities that result in meeting a habitat management goal.
- Habitat management activities designed to promote protection and restoration of native habitat types.

7. Wildlife Management Performance Standards

7.1 Native wildlife habitats and ecosystems management will focus on the following:

- Protecting rare and endangered species, and,
- Maintaining biodiversity.

7.2 Hunting, recreation and educational trips must be approved, scheduled, planned, and supervised through Range Control.

7.3 Any activity or use will prioritize protection of life, property, and natural resource values at the boundaries of the Camp Edwards Training Area where wildlife interfaces with the surrounding built environment.

7.4 Wildlife management will include the following actions, specific to the species targeted for management:

- Development and implementation of a plan to monitor hunting of game species.
- Planning for multi-use objectives for recreation and hunting that incorporate public input and recommendations.
- Development of suitable monitoring programs for federal and state-listed species, and regular exchange of information with the Natural Heritage and Endangered Species Program.

8. Air Quality Performance Standard

8.1 All uses and activities will be responsible for compliance with both the State Implementation Plan for Air Quality and the Federal Clean Air Act.

8.2 Air quality management activities will include air sampling if required by regulation of the activity.

9. Noise Management Performance Standards

9.1 Noise management activities shall conform to the Army's Environmental Noise Management Program policies for evaluation, assessment, monitoring, and response procedures.

10. Pest Management Performance Standards

10.1 Each user will develop and implement an Integrated Pest Management Program to control pest infestations that may include outside contracting of services. Non-native biological controls should not be considered unless approved by federal and state agencies.

10.2 Each user will be held responsible for management of pests that threaten rare and endangered species, or are exotic and invasive species, Invasive plant species that may be considered pest species are those defined by the United States Fish and Wildlife Service and the Massachusetts Natural Heritage and Endangered Species Program of the Division of Fisheries and Wildlife office. Site-specific analysis will be performed before implementation of any proposed pest management plans.

10.3 Pest vegetation control must be balanced against environmental impact and any proposed pest management activities, including the use of herbicides and mechanical methods, within rare species habitat areas must be approved by the Natural Heritage and Endangered Species Program, or in the case of federally listed species, by the United States Fish and Wildlife Service.

10.4 Only herbicide formulations approved by the United States Environmental Protection Agency, the Department of Agriculture, the agency managing the user, and the Commonwealth of Massachusetts may be applied.

10.5 Herbicides and pesticides will not be applied by aerial spraying unless required by emergency conditions and approved under applicable state and federal regulations.

<u>11. Fire Management Performance Standards</u>

11.1 All activities and uses shall manage, prevent, detect, and suppress fires on the Camp Edwards Training Area in coordination with the local and state fire services and natural resource managers in the Environmental & Readiness Center.

11.2 Prescribed bums will be used as a habitat management and fire prevention tool. Prescribed burns will be used to reduce natural fire potential and create or maintain diverse and rare species habitat.

11 .3 Pre-suppression activities will include strategic firebreaks and other management of vegetation in high risk and high-incidence areas. The Integrated Natural Resource Management Plan and Fire Management Plan will be consulted for proposed actions.

11.4 Other than the above, no open fires are allowed.

12. Stormwater Management Performance Standards

12.1 All stormwater facilities shall comply with the State Department of Environmental Protection Guidelines for Stormwater Management, including Best Management Practices and all other applicable standards for control and mitigation of increased storm water flow rates and improvement of water quality.

12.2 All increases in stormwater runoff will be controlled within the user's property.

12.3 No new stormwater discharges will be made directly into wetlands or wetland resource areas.

13. Wastewater Performance Standards

13.1 All wastewater and sewage disposal will be in conformance with the applicable Federal and Massachusetts Department of Environmental Protection agency regulations.

14. Solid Waste Performance Standards

14.1 All solid waste streams (i.e., wastes not meeting the criteria for hazardous wastes) will be monitored and managed to substitute, reduce, recycle, modify processes, implement best management practices, and/or reuse waste, thereby reducing the total tonnage of wastes,

14.2 All users will be held responsible for collection, removal and disposal outside of the Camp Edwards Training Areas of solid wastes generated by their activities.

14.3 All users must handle solid wastes using best management practices to minimize nuisance odors, windblown litter, and attraction of vectors.

14.4 No permanent disposal of solid waste within the Groundwater protection Policy area/Camp Edwards field training areas will be permitted.

15. Hazardous Materials Performance Standards

15.1 Where they are permitted, use and application of hazardous materials shall be otherwise minimized in accordance with pollution prevention and waste minimization practices, including material substitution.

15 .2 No permanent disposal of hazardous wastes within the Groundwater protection Policy area/Camp Edwards field training areas will be permitted.

15.3 Fuel Management

15.3.1 Spill Prevention, Control, and Countermeasure Plan, is in place to reduce potential for a release. Camp Edwards Spill Response Plan is in place to respond to a release if an event should occur. All users will comply with these plans at the Camp Edwards Training Area.

15.3.2 If found, non-complying underground fuel storage tanks will be removed in accordance with state and federal laws and regulations to include remediation of contaminated soil.

15 .3.3 No storage or movement of fuels for supporting field activities, other than in vehicle fuel tanks, will be permitted except in approved containers no greater than five gallons in capacity.

15.3.4 New storage tanks are prohibited unless they meet the following requirements:

- Are approved for maintenance heating, or, permanent emergency generators and limited to propane or natural gas fuels.
- Conform to the Groundwater Protection Policy and applicable codes.

15.4 Non-fuel Hazardous Material Storage

15.4 .1 No storage above those quantities necessary to support field training activities will be allowed within the Camp Edwards Training Area except where necessary to meet regulatory requirements, and where provided with secondary containment.

15.4.2 When required by applicable regulation, the user shall implement a Spill Prevention, Control and Containment/Emergency Response or other applicable response plan.

16. Hazardous Waste Performance Standards

16.1 All uses shall comply with applicable local, state, and federal regulations governing hazardous waste generation, management, and disposal (including overlays relative to Wellhead Protection, Zone II's within the Cantonment Area).

16.2 Accumulations of hazardous waste shall be handled in accordance with regulations governing accumulation and storage.

16.3 Existing facilities must implement pollution prevention and waste minimization procedures (process modifications, material substitution, recycling, and best management practices) to minimize waste generation and hazardous materials use.

16.4 Occupants and users will be held responsible for removing all solid or hazardous wastes generated during the period of use/tenancy/visitation upon their departure or in accordance with other applicable or relevant regulations.

16.5 Remedial activities undertaken under the Installation Restoration Program, the Impact Area Groundwater Study Program, the Massachusetts Contingency Plan, or other governing remediation programs are exempt from additional regulation (e.g., waste generation volume limits). Removal, storage, and disposal of contaminated material are required to comply with all state, and federal regulations.

16.6 Post-remedial uses and activities at previously impacted sites will be allowed in accordance with terms and conditions of the applicable regulations.

16.7 All hazardous wastes will be transported in accordance with federal Department of Transportation regulations governing shipment of these materials.

16.8 Transport shall reduce the number of trips for transfer and pick-up of hazardous wastes for disposal to extent feasible. Tills may include planning appropriate routes that minimize proximity to sensitive natural resource areas, and reducing internal transfers of material, including transfers from bulk storage tanks to drums, tankers, carboys, or other portable containers or quantities.

16.9 No permanent disposal of hazardous wastes within the Groundwater Protection Policy area/Camp Edwards field training areas will be permitted.

<u>17. Vehicle Performance Standards</u>

17.1 Vehicles within the Camp Edwards Training Area will be limited to the existing improved and unimproved road system except where required for natural resource management or property maintenance or where off-road activity areas are located and approved by the Environmental and Readiness Center in consultation with the Massachusetts Division of Fisheries and Wildlife.

17.2 Unimproved, established access ways will be limited to use by vehicles in accordance with soil conditions as described in the Soil Conservation Performance Standards.

17.3 The number of military and civilian vehicles within the Camp Edwards Training Area will be controlled using appropriate scheduling and signage.

18. General Use and Access Performance Standards

18.1 General User Requirements. Requirements that will apply to all users, both public and private, in the Camp Edwards Training Area include the following:

- All acts that pollute the groundwater supply are prohibited.
- No litter or refuse of any sort may be thrown or left in or on any property.
- All users will be held responsible for providing, maintaining, and re- moving closed-system, sanitary facilities necessary for their use and activity.
- No person shall wade or swim in any water body except for activities approved by the Massachusetts National Guard including remediation, scientific study, or research.
- Vehicles may only be driven on roads authorized and designated for such use and parked in designated areas, and may not cross any designated wetland.
- Public users may not impede the military training activities.

18.2. Civilian Use Manual. To guide public conduct on the Massachusetts Military Reservation, a Civilian Use Manual will be prepared and periodically updated. All civilian users will obtain and follow this Manual.

18.3. Siting and Design Performance Standards

18.3.1 New or expanded buildings should not be proposed within the Camp Edwards Training Areas, with the following exceptions:

- Buildings to support allowed training, operations and activities, including upgrading of those facilities currently in place,
- Buildings used for the purposes of remediation activities,
- Buildings used for the purposes of development, operation and maintenance of water supplies,
- Buildings used for the purpose of natural resource and land management.

<u>19. Range Performance Standards</u>

19.1. All operational ranges including but not limited to small arms ranges (SAR) shall be managed to minimize harmful impacts to the environment within the Upper Cape Water Supply Reserve. Range management at each range shall include to the maximum extent practicable metal recovery and recycling, prevention of fragmentation and ricochets, and prevention of sub-surface percolation of residue associated with the range operations. Camp Edwards shall be held responsible for the implementation of BMPs by authorized range users, including collection and removal of spent ammunition and associated debris.

19.2. Small arms ranges shall only be used in accordance with approved range plans. These plans shall be designed to minimize to the maximum extent practicable the release of metals or other contaminates to the environment outside of specifically approved containment areas/systems. Occasional ricochets that result in rounds landing outside of these containment areas is expected and every effort to minimize and correct these occurrences shall be taken. Failure to follow the approved range plans shall be considered a violation of this EPS.

19.3. All operational SARs shall be closely monitored by the Massachusetts National Guard to assess compliance of the approved range plans as well as the implementation and effectiveness of the range specific BMPs.

19.4. Camp Edwards/Massachusetts National Guard Environmental and Readiness Center shall staff and request appropriate funding to support its SAR management plans.

19.5. All users must use and follow Camp Edwards' Range Control checklists and procedures to:

- Minimize debris on the range (e.g. shell casings, used targets)
- Minimize or control residues on the ranges resulting from training (e.g., unburned constituents, metal shavings from the muzzle blast)
- Ensure the range is being used for the designated purpose in accordance with all applicable plans and approvals

19.6. Camp Edwards is responsible for following range operation procedures and maintaining range pollution prevention systems. Range BMPs shall be reviewed annually for effectiveness and potential improvements in their design, monitoring, maintenance, and operational procedures in an effort to continually improve them. Each year the annual report shall detail the range-specific activities including, but not limited to, the number of rounds fired, number of shooters and their organization, and the number of days the range was in use. The annual report will also detail active SAR groundwater well and lysimeter results, as well as any range maintenance/management activities that took place that training year and the result of such activities, i.e. lbs. of brass and projectiles recovered and recycled, etc. The Massachusetts National Guard shall provide regular and unrestricted access for the EMC to all its data and information, and will provide immediate access to environmental samples from the range, including range management and monitoring systems and any other applicable activities operating on the ranges.

19.7. Range plans and BMPs for training areas shall be reviewed and/or updated at least every three years. Management plans for new and upgraded ranges shall be in place prior to construction or utilization of the range. Range plans, at a minimum, will address long-term sustainable use, hydrology and hydrogeology, physical design, operation, management procedures, record keeping, pollution prevention, maintenance, monitoring, and applicable technologies to ensure sustainable range management. Range plans shall be integrated with other training area planning processes and resources.

19.8. The Massachusetts National Guard shall establish procedures for range maintenance and where applicable, maintenance and/or clearance operations to permit the sustainable, compatible, and safe use of operational ranges for their intended purpose within the Upper Cape Water Supply Reserve. In determining the frequency and degree of range maintenance and clearance operations, the Massachusetts National Guard shall consider, at a minimum, the environmental impact and safety hazards, each range's intended use, lease requirements, and the quantities and types of munitions or simulated munitions expended on that range.

APPENDIX B LIST OF CONTACTS

LIST OF CONTACTS

Massachusetts National Guard Environmental & Readiness Center

Emily Kelly Building 3468 Beaman Street Camp Edwards, MA 02542 Telephone: 339-202-9341 emily.d.kelly2.nfg@army.mil

Impact Area Groundwater Study Program

Pamela Richardson PB 0516 West Outer Road Camp Edwards, MA 02542 Telephone: 339-202-9360 Pamela.j.richardson.nfg@army.mil

Air Force Center for Civil Engineering

Doug Karson 322 East Inner Road Otis ANG Base, MA 02542 Telephone: 508-968-4678, ext. 2 douglas.karson@us.af.mil

Joint Base Cape Cod

Paul Rendon Building 3468, Beaman Street Camp Edwards, MA 02542 Telephone: 774-327-0643 paul.e.rendon2.nfg@army.mil

102d Intelligence Wing Massachusetts Air National Guard

Timothy Sandland 158 Reilly Street, 102d Intelligence Wing Otis ANG Base, MA 02542 Telephone: 508-968-4697 timothy.d.sandland.civ@mail.mil

U.S. Coast Guard Base Cape Cod

Elizabeth Kirkpatrick USCG Base Cape Cod, MA 02542 Telephone: 508-968-6696 elizabeth.l.kirkpatrick@uscg.mil

6th Space Warning Squadron (PAVE PAWS)

Patrick McNamara 1 Flatrock Road Sagamore, MA 02561-0428 508-968-3275 patrick.mcnamara.1@us.af.mil

Massachusetts National Guard, Public Affairs Office

Donald Veitch 2 Randolph Road Hanscom AFB, MA 01731 Telephone: 339-202-3950 donald.h.veitch.civ@army.mil

Environmental Management Commission Environmental Officer

Leonard Pinaud Building 3468, Beaman Street Camp Edwards, MA 02542 Telephone: 508-946-2871 leonard.Pinaud@mass.gov

Barnstable County Correctional Facility

Sheriff James Cummings 6000 Sheriff's Place Bourne MA, 02532 Telephone: 508-563-4302 jcummings@bsheriff.net

APPENDIX C SMALL ARMS RANGE AND SOLDIER VALIDATION LANE INFORMATION

Operations Maintenance and Monitoring Activities

OPERATIONS, MAINTENANCE & MONITORING ACTIVITIES JULIET & KILO RANGE TY 2021

Date	Juliet	Kilo
1 Oct 20	Maintenance: 70 gallons pumped (1 cm)	Maintenance: 110 gallons pumped (W 4 cm; E 6.5 cm)
13 Oct 20	Maintenance: 70 gallons pumped (0 cm)	Maintenance: 80 gallons pumped (W 2 cm; E 6.5 cm)
20 Oct 20	Maintenance: 410 gallons pumped (0 cm)	Maintenance: 600 gallons pumped (W 0 cm; E 0 cm)

Note: The STAPP[™] bullet capture systems on Juliet and Kilo ranges was dismantled in Fall 2020. Juliet and Kilo Ranges are currently operationally inactive ranges.

OPERATIONS, MAINTENANCE & MONITORING ACTIVITIES SIERRA & INDIA RANGES TY 2021

Date	Sierra	India
4 Oct 20		Pre/post-fire inspection
15 Oct 20		Pre/post-fire inspection
16 Oct 20	Pre/post-fire inspection	
17 Oct 20	Pre/post-fire inspection	Pre/post-fire inspection
23, 24 Oct 20		Pre/post-fire inspection
24 Oct 20	Pre/post-fire inspection	
7, 8 Nov 20	Pre/post-fire inspection	Pre/post-fire inspection
14 Nov 20	Pre/post-fire inspection	Pre/post-fire inspection
4, 6 Feb 21	Pre/post-fire inspection	Pre/post-fire inspection
6,7 Mar 21	Pre/post-fire inspection	
13 Mar 21	Pre/post-fire inspection	Pre/post-fire inspection
14 Mar 21	Pre/post-fire inspection	
18 Mar 21	Pre/post-fire inspection	
19, 21 Mar 21		Pre/post-fire inspection
20, 21 Mar 21	Pre/post-fire inspection	
25 Mar 21	Pre/post-fire inspection	
26, 27 Mar 21	Pre/post-fire inspection	Pre/post-fire inspection
7, 9 Apr 21	Pre/post-fire inspection	Pre/post-fire inspection
10 Apr 21	Pre/post-fire inspection	
14, 15 Apr 21	Pre/post-fire inspection	
16, 17 Apr 21		Pre/post-fire inspection
16-18 Apr 21	Pre/post-fire inspection	
19, 20 Apr 21	Maintenance: Bullet pocket repair on berms	Maintenance: Bullet pocket repair on berms
1 May 21	Pre/post-fire inspection	
14, 15 May 21	Pre/post-fire inspection	
14, 16 May 21		Pre/post-fire inspection
19 May 21	Pre/post-fire inspection	
21, 23 May 21	Pre/post-fire inspection	Pre/post-fire inspection
5, 6 Jun 21	Pre/post-fire inspection	Pre/post-fire inspection
8 Jun 21		Pre/post-fire inspection
9 Jun 21	Pre/post-fire inspection	
11 Jun 21	Pre/post-fire inspection	
11,12 June		Pre/post-fire inspection
12, 13 Jun 21	Pre/post-fire inspection	
20 Jun 21		Pre/post-fire inspection
20, 23 Jun 21	Pre/post-fire inspection	
25, 27 Jun 21	Pre/post-fire inspection	
9 Jul 21	Pre/post-fire inspection	
12, 13 Jul 21	Pre/post-fire inspection	Pre/post-fire inspection
18 Jul 21	Pre/post-fire inspection	

Final Annual State of the Reservation Report for Training Year 2021

Date	Sierra	India
24 Jul 21	Pre/post-fire inspection	
27, 29 Aug 21	Pre/post-fire inspection	
10, 12 Sep 21		Pre/post-fire inspection
11 Sep 21	Pre/post-fire inspection	
24, 25 Sep 21	Pre/post-fire inspection	

OPERATIONS, MAINTENANCE & MONITORING ACTIVITIES LIMA RANGE TY 2021

Date	Activity
19, 21 Oct 20	Pre/post-fire inspection
30 Apr 21	Pre/post-fire inspection
16 May 21	Pre/post-fire inspection
10 Jun 21	Pre/post-fire inspection

OPERATIONS, MAINTENANCE & MONITORING ACTIVITIES ECHO RANGE TY 2021

Date	Activity
17 Oct 20	Pre/post-fire inspection
24 Oct 20	Pre/post-fire inspection
9, 13 Nov 20	Pre/post-fire inspection
14, 15 Nov 20	Pre/post-fire inspection
5 Feb 21	Pre/post-fire inspection
14 Mar 21	Pre/post-fire inspection
25 Mar 21	Pre/post-fire inspection
27 Mar 21	Pre/post-fire inspection
14, 15 Apr 21	Pre/post-fire inspection
16, 17 Apr 21	Pre/post-fire inspection
30 Apr 21	Pre/post-fire inspection
4 May 21	Pre/post-fire inspection
15, 16 May 21	Pre/post-fire inspection
21, 22 May 21	Pre/post-fire inspection
5 Jun 21	Pre/post-fire inspection
10 Jul 21	Pre/post-fire inspection
23, 24 Jul 21	Pre/post-fire inspection
27 Aug 21	Pre/post-fire inspection
28 Aug 21	Pre/post-fire inspection
10, 11 Sep 21	Pre/post-fire inspection
11, 12 Sep 21	Pre/post-fire inspection

Lead Ammunition Use

Juliet, Kilo, Tango and Echo Ranges

	LEAD A	MMUNITION USE	HISTORY
		ECHO RANGE	
Training Year	.40 Cal Lead	9 mm Lead	Total
TY 2021	3,476	51,438	54,914
TY 2020	0	14,308	14,308
TY 2019	0	4,350	4,350
TY 2018	0	0	0
TY 2017	0	0	0
TY 2016	0	0	0
TY 2015	0	3471	347
TY 2014	0	0	0
TY 2013	0	0	0
TY 2012	0	0	0
TY 2011	0	0	0
TY 2010	0	0	0
TY 2009	0	0	0
TY 2008	0	0	0
TY 2007	0	100 ¹	100
TOTAL	3,476	74,568	73,919

Notes: Echo Range became operational in Fall 2019.

1. Firing at Echo Range in TY 2007 and TY 2015 were part of tests for reintroducing lead ammunition.

		LE		UNITION USI			
			(CUMULATIVE			
Training Year	Echo Range	Sierra Range	KD Range	Tango Range	Juliet Range	Kilo Range	Total
TY 2021	54,914	0	0	0	0	0	54,914
TY 2020	14,308	0	0	0	7,690	84,032	106,030
TY 2019	4,350	0	0	0	30,089	81,179	115,618
TY 2018	0	0	0	0	36,583	119,342	155,925
TY 2017	0	0	0	16,495	51,897	115,662	184,054
TY 2016	0	0	0	4,200	61,052	49,638	114,890
TY 2015	347 ¹	0	1 ,993 3	6,960	65,266	69,973	144,539
TY 2014	0	0	0	3,220	36,937	80,356	120,513
TY 2013	0	0	0	9,950	40,196	73,742	123,888
TY 2012	0	0	0	12,117	31,026	59,912	103,055
TY 2011	0	2,1202	0	37,122	63,541	125,154	227,937
TY 2010	0	0	0	90,328	34,371	60,362	185,061
TY 2009	0	0	0	137,362	16,262	29,783	183,407
TY 2008	0	0	0	17,725	0	0	17,725
TY 2007	100 ¹	0	0	8,547	0	0	8,647
TOTAL	78,044	2,120	1,993	344,026	474,910	949,135	1,846,203

Notes: 1. Firing at Echo Range in TY 2007 and TY 2015 were part of tests for reintroducing lead ammunition.

2. Firing at Sierra Range in TY 2011 was part of a Line of Sight Analysis test.

3. Firing at KD Range in TY 2015 was part of a planning-level noise assessment.

		LE		UNITION U	se histor	۲Y		
			JI	ULIET RANC	ЭЕ			
Training Year	.40 Cal Lead	9 mm Lead	7.62 mm Lead	5.56 mm Lead	.38 Cal Lead	.45 Cal Lead	.233 Cal Lead	Total
TY 2020	0	7,690	0	0	0	0	0	7,690
TY 2019	0	17,774	0	12,315	0	0	0	30,089
TY 2018	0	12,781	0	23,802	0	0	0	36,583
TY 2017	0	26,108	0	25,789	0	0	0	51,897
TY 2016	0	9,200	0	51,852	0	0	0	61,052
TY 2015	2,500	24,828	0	36,938	0	1,000	0	65,266
TY 2014	2,400	18,874	9,000	6,663	0	0	0	36,937
TY 2013	2,450	9,260	0	27,286	0	0	1,200	40,196
TY 2012	750	12,819	0	14,457	0	0	3,000	31,026
TY 2011	0	16,911	0	46,630	0	0	0	63,541
TY 2010	0	7,311	0	27,060	0	0	0	34,371
TY 2009	0	4,780	0	11,482	0	0	0	16,262
TY 2008	0	0	0	0	0	0	0	0
TY 2007	0	0	0	0	0	0	0	0
TOTAL	8,100	168,336	9,000	284,274	0	1,000	4,200	474,910

Note: A STAPP[™] bullet capture system was installed at Juliet Range in August/September 2008 and dismantled in Fall 2020. Juliet Range is currently an operationally inactive range; the range was not used in TY 2021.

		LE.	AD AMM	UNITION U	SE HISTOR	Y		
			ł	KILO RANG	E			
Training Year	.40 Cal Lead	9 mm Lead	7.62 mm Lead	5.56 mm Lead	.38 Cal Lead	.45 Cal Lead	.233 Cal Lead	Total
TY 2020	0	61,480	0	21,052	0	1,500	0	84,032
TY 2019	0	44,428	0	36,751	0	0	0	81,179
TY 2018	0	25,803	0	93,539	0	0	0	119,342
TY 2017	0	50,147	0	65,515	0	0	0	115,662
TY 2016	0	21,373	0	28,265	0	0	0	49,638
TY 2015	0	15,601	0	54,372	0	0	0	69,973
TY 2014	0	31,304	0	49,052	0	0	0	80,356
TY 2013	0	731	0	73,011	0	0	0	73,742
TY 2012	0	7,181	0	52,731	0	0	0	59,912
TY 2011	14,362	9,850	0	100,942	0	0	0	125,154
TY 2010	1,450	7,500	0	51,412	0	0	0	60,362
TY 2009	0	6,675	0	23,108	0	0	0	29,783
TY 2008	0	0	0	0	0	0	0	0
TY 2007	0	0	0	0	0	0	0	0
TOTAL	15,812	282,073	0	649,750	0	1,500	0	949,135

Note: A STAPP[™] bullet capture system was installed at Kilo Range in August/September 2008 and dismantled in Fall 2020. Kilo Range is currently an operationally inactive range; the range was not used in TY 2021.

			LEAD	AMMUNITIC TANGO		STORY			
Training Year	.40 Cal Lead	9 mm Lead	7.62 mm Lead	5.56 mm Lead	.38 Cal Lead	.45 Cal Lead	.233 Cal Lead	.22 Cal Lead	Total
TY 2017	0	2,250	4,240	9,380	0	0	0	625	16,495
TY 2016	0	4,200	0	0	0	0	0	0	4,200
TY 2015	0	5,240	0	1,720	0	0	0	0	6,960
TY 2014	0	0	0	3,220	0	0	0	0	3,220
TY 2013	1,600	1,800	0	2,000	0	0	4,550	0	9,950
TY 2012	2,800	7,373	0	1,944	0	0	0	0	12,117
TY 2011	5,200	6,765	0	25,157	0	0	0	0	37,122
TY 2010	40,341	2,496	0	41,042	0	6,449	0	0	90,328
TY 2009	0	31,985	0	105,077	300	0	0	0	137,362
TY 2008	4,075	9,094	4,556	0	0	0	0	0	17,725
TY 2007	0	0	0	8,547	0	0	0	0	8,547
TOTAL	54,016	71,203	8,796	198,087	300	6,449	4,550	625	344,026

Note: A STAPP[™] bullet capture system was installed at Tango Range in July 2006 and dismantled in October 2017. During TY 2021, Tango Range was reconfigured for use as a copper ammunition-only zeroing range.

Copper Ammunition Use

Sierra and India Ranges

Final Annual State of the Reservation Report for Training Year 2021

			NITION USE HISTORY DINDIA RANGES	
Training Year	Sierra Range 5.56 Copper	India Range 5.56 Copper	India Range 7.62 Copper	Total
TY 2021	221,756	73,400	0	295,156
TY 2020	131,274	90,849	0	222,123
TY 2019	98,426	71,098	0	169,524
TY 2018	98,393	105,143	0	203,536
TY 2017	95,905	105,099	4,793	205,797
TY 2016	80,747	60,571	0	141,318
TY 2015	66,086	12,947	0	79,033
TY 2014	46,804	27,872	0	74,676
TY 2013	34,493	10,918	0	45,411
TY 2012	34,359	6,601	0	40,960
TOTAL	908,243	564,498	4,793	1,477,534
Note: Firing of copper	ammunition began at Sierr	a Range on July 8, 2012 an	d at India Range on Septemb	per 15, 2012.

Small Arms Range Sampling Reports

Soil Sampling Results

Fall 2021

	Analysis pare	otheux	VINEAU	Silun	Action	Petection	Qualifiers	Method Detction	Reporting Detection Limit	Quantitation Limit	Detection Limit Units
					Mg/Kg						
	10/4/2021 15:12	Antimony	1.5	mg/kg	300	٨	1	0.8	1.6	2.2	mg/kg
	10/4/2021 15:12	Calcium	780	mg/kg		٨		15	55	110	mg/kg
0.	9/22/2021 19:56	Chloride	33	mg/kg		N	MU	13	33	33	mg/kg
	10/4/2021 15:12	Copper	1.2	mg/kg	10,000	٢	1	0.24	0.88	5.5	mg/kg
-	10/4/2021 15:12	Iron	57	mg/ltg		٨	1	9.1	22	88	mg/kg
-	10/5/2021 8:23	Lead	14	mg/kg	3,000	٢	a	0.34	0.88	66'0	mg/kg
÷.	10/4/2021 15:12	Magnesium	400	mg/kg		٢	0	8.7	22	33	mg/kg
H	1/7/2021 13:41	pH adj. to 25 deg C	5.3	pH units		٨	ΗF	0.1	0.1	1.0	pH units
Ă	10/4/2021 15:12	Potassium	1600	mg/kg		۲		45	180	330	mg/kg
H	10/4/2021 15:12	Sodium	1700	mg/kg		٨		32	110	550	mg/kg
6	9/22/2021 19:56	Sulfate	28	mg/kg		N	MU	10	28	55	mg/kg
10	10/4/2021 15:15	Antimony	2.2	mg/kg	300	N	n	1.1	2.2	2.9	mg/kg
10	10/4/2021 15:15	Calcium	840	mg/kg		٢		20	73	150	mg/kg
9/2	9/22/2021 20:12	Chloride	48	mg/kg	225	N	n	19	48	48	mg/kg
10/	10/4/2021 15:15	Copper	6.3	mg/kg	10,000	٢	1	0.31	1.2	7.3	mg/kg
10/	10/4/2021 15:15	Iron	11000	mg/kg		γ	20 A	12	29	120	mg/kg
10/	10/5/2021 8:26	Lead	19	mg/ltg	3,000	۲	α	0.45	1.2	1.3	mg/kg
10/2	10/4/2021 15:15	Magnesium	1000	mg/kg		۲		11	29	44	mg/kg
10/	10/7/2021 13:41	pH adj. to 25 deg C	5,3	pH units		٢	HF	1.0	1.0	0.1	pH units
10/	10/4/2021 15:15	Potassium	670	mg/kg		٨		59	230	440	mg/kg
10	10/4/2021 15:15	Sodium	60	mg/kg		٨	1	42	150	730	mg/kg
6	9/24/2021 18:22	Sulfate	40	mg/ltg		z	n	15	40	81	mg/kg
2	10/4/2021 15:32	Antimony	1,8	mg/kg	300	z	n	0.85	1.8	2.3	mg/kg
4	10/4/2021 15:32	Calcium	680	mg/kg		٢		17	59	120	mg/kg
6	9/22/2021 20:29	Chloride	33	mg/kg		z	NN	13	33	33	mg/kg
3	10/4/2021 15:32	Copper	5.3	mg/kg	10,000	٨	1	0.25	0.94	5,9	mg/kg
10	10/4/2021 15:32	Iron	9500	mg/kg		٢	0.434	9.7	23	94	mg/kg
10	10/5/2021 8:30	Lead	15	mg/kg	3,000	٢	۵	0.36	0.94	1.1	mg/kg
10	10/4/2021 15:32	Magnesium	880	mg/kg		٢		9,3	23	35	mg/kg
3	10/7/2021 13:41	pH adj. to 25	5.2	pH units		>	Ħ	0.1	0.1	1.0	pH units
1÷	10/4/2021 15:32	Dotaccium	500	malka		>		48	100	350	malka
(10/4/2021 15:32	Sodium	48	mg/kg		. >	-	34	120	590	mg/kg
đ		L			Ī			~~		L	malka

Limit Units	mg/kg	pH units	mg/kg	pH units	mg/kg	pH units	mg/kg	mg/kg	me/kp																								
Quantitation Limit	2.2	110	36	5.6	06	1	34	0.1	340	560	60	2.2	110	37	5.4	86	0.97	32	0.1	320	540	62	2.2	110	35	5.5	88	66.0	33	0.1	330	550	85
Reporting Detection Limit	1.7	56	36	6.0	22	6.0	22	1.0	180	110	30	1.6	54	37	0.86	22	0.86	22	1.0	170	110	31	1.7	55	35	0.85	22	0.88	22	1.0	180	110	29
Method Detction Limit	0.82	16	14	0.24	9.3	0.35	8.9	0.1	46	32	11	0.79	15	14	0.23	8.9	0.33	8.5	0.1	44	31	11	0.81	16	13	0.24	9.1	0.34	8.7	0.1	45	32	11
Qualifiers	n		NN	1		۵		ΗF		E	NM	n		n			a		HF		1	NN	n		NN	6		a		벆		1	THE S
Detection Flag	N	Y	z	۲	۲	٢	٨	٨	7	Y	z	N	٢	N	٧	٧	γ	٨	Y	Y	γ	N	N	٧	N	٢	γ	γ	Y	۲	٢	٢	N
OMMP Action Level Mg/Kg	300			10,000		3,000	100					300			10,000		3,000	10.00					300			10,000		3,000					
Units	mg/kg	pH units	mg/kg	pH units	mg/kg	pH units	mg/kg	mg/kg	ma/ba																								
Result	1.7	630	36	4.9	8600	13	760	5,3	480	35	30	1.6	610	37	5.5	8500	14	820	5.3	480	32	31	1.7	660	35	5	8600	14	870	5.4	500	33	00
Analyte	Antimony	Calcium	Chloride	Copper	Iron	Lead	Magnesium	pH adj. to 25 de# C	Potassium	Sodium	Sulfate	Antimony	Calcium	Chloride	Copper	Iron	Lead	Magnesium	pH adj. to 25 deg C	Potassium	Sodîum	Sulfate	Antimony	Calcium	Chloride	Copper	Iron	Lead	Magnesium	pH adj. to 25 deg C	Potassium	Sodium	Culfater
Analysis Date	10/4/2021 15:35	10/4/2021 15:35	9/22/2021 20:45	SW6010C 10/4/2021 15:35	SW6010C 10/4/2021 15:35	10/5/2021 8:33	10/4/2021 15:35	10/7/2021 13:41	SW6010C 10/4/2021 15:35	10/4/2021 15:35	9/22/2021 20:45	10/4/2021 15:39	SW6010C 10/4/2021 15:39	9/22/2021 21:02	10/4/2021 15:39	10/4/2021 15:39	10/5/2021 8:37	SW6010C 10/4/2021 15:39	SW9045D 10/7/2021 13:41	10/4/2021 15:39	SW6010C 10/4/2021 15:39	9/22/2021 21:02	10/4/2021 15:42	10/4/2021 15:42	9/22/2021 21:18	SW6010C 10/4/2021 15:42	SW6010C 10/4/2021 15:42	10/5/2021 8:40	10/4/2021 15:42	10/7/2021 13:41	SW6010C 10/4/2021 15:42	SW6010C 10/4/2021 15:42	81-10 1000/00/a
Method	SW6010C	SW6010C	SW9056	SW6010C	SW6010C	SW6010C	-	SW9045D	SW6010C	SW6010C	SW9056	SW6010C	SW6010C	SW9056	SW6010C	_	SW6010C	SW6010C	SW9045D	SW/6010C	SW6010C	SW9056	SW6010C	-	SW9056	SW6010C	SW6010C	SW6010C	SW6010C	SW9045D	SW6010C	SW6010C	CIMIDUCE
Sample Code	SSERNG002_SEP21-09132021	SSERNG003_SEP21-09132021	SSERNG004_SEP21-09132021	SSERNGOOA SEP01-00120001																													
Range	Echo																																

Detection	Limit Units		mg/kg	pH units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	pH units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg						
Quantitation	Limit		2.1	110	80 F2	5.4	86	0.97	32	0.1	320	540	64	38	36	60	2.3	110	35	5,7	16	I	34	0.1	340	570	58	2.3	120	5.9
Reporting	Detection		1.6	54	38	0.86	21	0.86	21	0.1	170	110	32	38	36	30	1.7	57	35	0.91	23	0.91	23	1.0	180	110	29	1.8	53	0.94
Method	Detction		0.79	15	15	0.23	8.9	0.33	8.5	0.1	44	31	12	15	14	п	0.83	16	13	0.25	9.4	0.35	đ	1.0	47	33	11	0.86	17	0.25
Qualifiers			ŋ		MU			a		북		J	n	NN		Σ	LU	11	MU	If	11	a	11	ΗF	11	III	NM	Ľŕ		
Detection	Flag		N	γ	N	٢	٨	γ	٨	٨	Y	Y	N	N	٨	*	N	γ	N	٨	٢	Y	Y	٨	γ	γ	N	٢	7	2
OMMP	Action Level	Mg/Kg	300	27.55 27.55	- 32	10,000		3,000							a - 4 0		300		8	10,000		3,000			10 N		- 24	300		10,000
Units			mg/kg	mg/kg	mg/ltg	mg/kg	mg/kg	mg/kg	mg/kg	pH units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/lcg	mg/kg	mg/kg	mg/kg	mg/kg	mg/ltg	pH units	mg/kg	mg/lcg	mg/kg	mg/kg	mg/kg	mg/kg
Result			1.6	680	38	ŝ	9600	16	920	5.4	560	36	32	38	609	553	1.7	690	35	8.4	8800	17	S40	5.4	470	60	29	26.7	4050	74.9
Analyte			Antimony	Calcium	Chloride	Copper	Iron	Lead	Magnesium	pH adj. to 25 deg C	Potassium	Sodium	Sulfate	Chloride	Chloride	Sulfate	Antimony	Calcium	Chloride	Copper	Iron	Lead	Magnesium	pH adj. to 25 deg C	Potassium	Sodium	Sulfate	Antimony	Calcium	Copper
Analysis Date			10/4/2021 15:45	10/4/2021 15:45	9/22/2021 21:35	10/4/2021 15:45	10/4/2021 15:45	10/5/2021 8:43	10/4/2021 15:45	10/7/2021 13:41	10/4/2021 15:45	10/4/2021 15:45	9/24/2021 18:37	9/22/2021 21:51	9/22/2021 22:24	9/24/2021 19:22	10/4/2021 14:55	10/4/2021 14:55	9/22/2021 23:13	10/4/2021 14:55	10/4/2021 14:55	10/5/2021 9:00	10/4/2021 14:55	10/7/2021 13:41	10/4/2021 14:55	10/4/2021 14:55	9/22/2021 23:13	10/4/2021 15:05	10/4/2021 15:05	10/4/2021 15:05
Method			SW6010C	SW6010C	SW9056	SW6010C	SW6010C	_		SW9045D	SW6010C	SW6010C	SW9056	SW9056	SW9056	SW9056	SW6010C	SW6010C	SW9056		SW6010C	SW6010C	SW6010C	SW9045D	SW6010C	SW6010C	SW9056	SW6010C	SW6010C	SW6010C
Sample Code			SSERNG005_SEP21-09132021	SSERNG005_SEP21-09132021LR	SSERNG005_SEP21-09132021SD	SSERNG005_SEP21-09132021SD	SSERNG006_SEP21-09132021	SSERNG006_SEP21-09132021	SSERNG006_SEP21-09132021	100	2.3	SSERNG006_SEP21-09132021	SSERNG006_SEP21-09132021	SSERNG006_SEP21-09132021	SSERNG006_SEP21-09132021	SSERNG006_SEP21-09132021	SSERNG006_SEP21-09132021	SSERNG005_SEP21-09132021SD	SSERNG006_SEP21-09132021SD	SSERNG006_SEP21-09132021SD										
Range			Echo	Echo	Echo	Echo	Echo	Echo	Echo	Echo	Echo	Echo	Echo	Echo	Echo	Echo	Echo	Echo	Echo											

Detection Limit Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	pH units	malko	mø/ko	mg/kg	pH units		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	pH units	mg/kg	mg/kg	mg/kg
Quantitation Limit	94	П	35	350	290	23	110	33	5.7	92	1	34	0.1	340	570	56	1.0		2.5	120	36	6.2	66	1.1	37	0.1	370	620	60
Reporting Detection Limit	23	0.94	23	190	120	1.7	57	33	0.92	23	0.92	23	1.0	180	011	28	1.0		1.9	62	36	0.99	25	0.99	25	0.1	200	120	30
Method Detction Limit	2.6	0.36	5.6	48	34	0.84	16	13	0.25	9.5	0.36	1.6	1.0	47	33	10	1.0		0.91	17	14	0.27	10	0.38	9.8	0.1	51	36	11
Qualifiers	4	a			28 - 8	U		JM			a		ΗF		Ŧ	NN		0	D		JM	1000 - D		a	8993 1	Ħ		1	MU
Detection Flag	۲	۲	×	*	٨	N	٢	٨	٢	٢	٨	٢	۲	>	~	z	٨		z	٨	٢	γ	٢	٨	٢	٢	7	٨	z
OMMP Action Level Mg/Kg		3,000				300			10,000	1 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10	3,000						8		300			10,000		3,000					
Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/ltg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	pH units	molite	molka	mg/kg	pH units		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	pH units	mg/kg	mg/kg	mg/kg
Result	9550	7.67	4200	3820	3260	1.7	1000	13	35	9600	90	1300	5.5	670	48	28	5.5	ALC: N	1.9	1200	17	11	9300	13	1400	S,S	690	44	30
Analyte	Iron	Lead	Magnesium	Potassium	Sodium	Antimony	Calcium	Chloride	Copper	Iron	Lead	Magnesium	pH adj. to 25 doof	Potaesium	Sodium	Sulfate	pH adj. to 25	deg C	Antimony	Calcium	Chloride	Copper	Iron	Lead	Magnesium	pH adj. to 25 deø C	Potassium	Sodium	Sulfate
Analysis Date	10/4/2021 15:05	10/5/2021 9:10	10/4/2021 15:05	SW6010C 10/4/2021 15:05	10/4/2021 15:05	10/5/2021 10:04	10/5/2021 10:04	9/23/2021 3:19	10/5/2021 10:04	10/5/2021 10:04	10/5/2021 10:04	10/5/2021 10:04	SW9045D 10/7/2021 13:41	10/5/2021 10:04	10/5/2021 10:04	9/23/2021 3:19	SW/9045D 10/7/2021 13:41		10/5/2021 10:01	10/5/2021 10:01	9/23/2021 3:03	10/5/2021 10:01	10/5/2021 10:01	10/5/2021 10:01	10/5/2021 10:01	10/7/2021 13:41	10/5/2021 10:01	10/5/2021 10:01	9/23/2021 3:03
Method	SW6010C	SW6010C	SW6010C	SW6010C	SW6010C	SW6010C	SW6010C	SW9056	1.1	SW6010C	SW6010C	SW6010C	SW9045D	SWEDTOC	-		SW/9045D		_		SW9056	SW6010C	_	SW6010C	SW6010C	SW9045D	SW6010C	SW6010C	SW9056
Sample Code	SSERNG006_SEP21-091320215D	SSERNG006_SEP21-09132021SD	SSERNG006_SEP21-091320215D	SSERNG006_SEP21-09132021SD	SSERNG006_SEP21-09132021SD	SSIRNG001_SEP21-09152021	SSIRNG001_SEP21-09152021	SSIRNG001_SEP21-09152021		SSIRNG001_SEP21-09152021	SSIRNG001_SEP21-09152021	SSIRNG001_SEP21-09152021	SSIRNG001_SEP21-09152021	SIRNGOUT SEPTI-DOT 5001	T	t	æ	~		SSLRNG001_SEP21-09152021	SSLRNG001_SEP21-09152021		2	SSLRNG001_SEP21-09152021	SSLRNG001_SEP21-09152021	SSLRNG001_SEP21-09152021			
Range	Echo	Echo	Echo	Echa	Echo	India	India	India	India	India	India	India	India	India	India	India	India		Lima	Lima	Lima	Lima	Lima	Lima	Lima	Líma	Lima	Lima	Lîma
Range	Sample Code	Method	Analysis Date	Analyte	Result	Units	OMMP	Detection	Qualifiers	Method	Reporting	Quantitation	Detection																
--------	---------------------------	---------	-------------------------	------------------------	--------	----------	--------------------------	-----------	------------	----------	--------------------	--------------	-------------																
							Action Level Me/Kg	Flag		Detction	Detection Limit	Limit	Limit Units																
Sierra	SSSRNG001_SEP21-09152021	SW6010C	10/5/2021 9:58	Antimony	1.9	mg/kg	300	z	5	0.91	19	2.5	mg/kg																
Sierra	SSSRNG001_SEP21-09152021	SW6010C	10/5/2021 9:58	Calcium	1300	mg/kg		٨		18	62	120	mg/kg																
Sierra	SSSRNG001_SEP21-09152021	SW9056	9/23/2021 2:46	Chloride	15	mg/kg		٨	ML	14	37	37	mg/kg																
Sierra	SSSRNG001_SEP21-09152021	SW6010C	10/5/2021 9:58	Copper	23	mg/kg	10,000	٨		0.27	1	6.2	mg/kg																
Sierra	SSSRNG001_SEP21-09152021	SW6010C	10/5/2021 9:58	Iron	9700	mg/kg		٨		10	25	100	mg/kg																
Sierra	SSSRNG001_SEP21-09152021	SW6010C		Lead	22	mg/kg	3,000	Y	α	0.39	1	1.1	mg/kg																
Sierra	SSSRNG001_SEP21-09152021	SW6010C	10/5/2021 9:58	Magnesium	1300	mg/kg		Y		9.9	25	37	mg/kg																
Sierra	SSSRNG001_SEP21-09152021	SW9045D	SW9045D 10/7/202113:41	pH adj. to 25 deg C	5,5	pH units		٨	Η	0.1	0.1	0.1	pH units																
Sierra	SSSRNG001_SEP21-09152021	SW6010C	10/5/2021 9:58	Potassium	570	mg/kg		Y		51	200	370	mg/kg																
Sierra	SSSRNG001_SEP21-09152021	SW6010C	10/5/2021 9:58	Sodium	48	mg/kg		٨	1	36	120	620	mg/kg																
Sierra	SSSRNG001_SEP21-09152021	SW9056	SW9056 9/24/2021 23:06	Sulfate	31	mg/kg	0	z	MU	11	31	62	mg/kg																
Tango	SSTRNG001_SEP21A-09142021	SW6010C	10/4/2021 15:49	Antimony	1.9	mg/kg	300	z	n	16.0	1.9	2.5	mg/kg																
Tango	SSTRNG001 SEP21A-09142021	SW6010C	10/4/2021 15:49	Calcium	5500	mg/kg		٢		18	62	120	mg/kg																
Tango	SSTRNG001_SEP21A-09142021	SW9056	9/22/2021 23:29	Chloride	33	mg/kg	3 	٨	ML	14	37	37	mg/kg																
Tango	SSTRNG001_SEP21A-09142021	SW6010C	SW6010C 10/4/2021 15:49	Copper	17	mg/kg	10,000	٢		0.27	0.99	6.2	mg/kg																
Tango	SSTRNG001_SEP21A-09142021	SW6010C	SW6010C 10/4/2021 15:49	Iron	23000	mg/kg	8	Y		10	25	66	mg/kg																
Tango	SSTRNG001_SEP21A-09142021	SW6010C		Lead	29	mg/kg	3,000	Y	α	0.38	0.99	1.1	mg/kg																
Tango	SSTRNG001_SEP21A-09142021	SW6010C	10/4/2021 15:49	Magnesium	3600	mg/kg		Y		9.8	25	37	mg/kg																
Tango	SSTRNG001_SEP21A-09142021	SW9045D	10/7/2021 13:41	pH adj. to 25 deg C	6.1	pH units		٨	HF	0.1	0.1	0.1	pH units																
Tango	SSTRNG001_SEP21A-09142021	SW6010C	SW6010C 10/4/2021 15:49	Potassium	1500	mg/kg	963 - 5	٨	20.00	51	200	370	mg/kg																
Tango	SSTRNG001 SEP21A-09142021	SW6010C	SW6010C 10/4/2021 15:49	Sodium	65	mg/kg	100	٢	I.	36	120	620	mg/kg																
Tango	SSTRNG001_SEP21A-09142021	SW9056	9/24/2021 20:07	Sulfate	89	mg/kg	1	۸	В	11	31	62	mg/kg																
Tango	SSTRNG001_SEP21B-09142021	SW6010C	10/4/2021 15:52	Antimony	1.6	mg/kg	300	z	n	0.77	1.6	2.1	mg/kg																
Tango	SSTRNG001_SEP21B-09142021	SW6010C	10/4/2021 15:52	Calcium	4000	mg/kg		٨		15	52	100	mg/kg																
Tango	SSTRNG001_SEP21B-09142021	SW9056	9/22/2021 23:46	Chloride	19	mg/kg		X	10 J	11	30	30	mg/kg																
Tango	SSTRNG001_SEP21B-09142021	SW6010C	SW6010C 10/4/2021 15:52	Copper	12	mg/kg	10,000	۲		0.23	0.84	5.2	mg/kg																
Tango	SSTRNG001_SEP21B-09142021	SW6010C	10/4/2021 15:52	Iron	18000	mg/kg	1230	٢	1.00	8.7	21	84	mg/kg																
Tango	SSTRNG001_SEP21B-09142021	SW6010C	10/5/2021 9:20	Lead	25	mg/kg	3,000	Y	a	0.32	0.84	0.94	mg/kg																
Tango	SSTRNG001_SEP21B-09142021	SW6010C	10/4/2021 15:52	Magnesium	2800	mg/kg	8	7		8.3	21	31	mg/kg																
Tango	SSTRNG001_SEP21B-09142021	SW9045D	10/7/2021 13:41	pH adj. to 25 deg C	5.S	pH units		*	또	0.1	0.1	1.0	pH units																
Tango	SSTRNG001_SEP21B-09142021	SW6010C	SW6010C 10/4/2021 15:52	Potassium	1200	mg/kg		Y		43	170	310	mg/kg																
Tango	SSTRNG001_SEP21B-09142021	SW6010C	SW6010C 10/4/2021 15:52	Sodium	51	mg/kg	8	٨	1	30	100	520	mg/kg																
Tango	S5TRNG001_SEP21B-09142021	SW9056	9/24/2021 20:22	Sulfate	170	mg/kg		۲	B	6	25	49	mg/kg																

Detection Limit Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	pH units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	pH units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	pH units	mg/kg	mg/kg	me/ka
Quantitation Limit	2.2	110	30	5.4	87	76.0	32	1.0	320	540	50	2.2	110	33	5.6	90	1	34	1.0	340	560	54	2.2	110	37	5.5	87	0.98	33	10	330	550	ū
Reporting Detection Limit	1.6	54	30	0.87	22	0.87	22	0.1	170	110	25	1.7	56	33	0.9	22	6.0	22	0.1	180	110	27	1.6	55	37	0.87	22	0.87	22	0.1	170	110	10
Method Detction Limit	0.79	15	12	0.23	8.9	0.34	3.6	1.0	44	31	9.2	0.82	16	12	0.24	9.3	0.35	8.9	1.0	46	32	9.9	0.8	15	14	0.24	ŋ	0.34	8.6	1.0	45	31	44
Qualifiers	n		ML			g		ΗF			8	U		M			q	100	HF		j,	JB	D		M			۵	- 1944 - 1944 - 1944	ΗF			9
Detection Flag	z	٢	٨	٢	Y	٨	Y	Y	٨	٨	٢	z	٢	Y	٢	٨	Y	٢	٢	٨	٢	٨	z	Y	۲	Y	٢	٨	٢	۲	٨	۲	,
OMMP Action Level Mg/Kg	300			10,000		3,000						300			10,000		3,000						300			10,000		3,000	100000				ľ
Cufts	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	pH units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	pH units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	pH units	mg/kg	mg/kg	
Result	1.6	4300	24	13	20000	25	3000	6,9	1300	51	110	1.7	1200	40	12	14000	33	1700	5.7	890	68	26	1.6	1400	80	13	15000	33	1900	5.8 8	950	79	1
Analyte	Antimony	Calcium	Chloride	Copper	Iron	Lead	Magnesium	pHadj. to 25 deg C	Potassium	Sodium	Sulfate	Antimony	Calcium	Chloride	Copper	Iron	Lead	Magnestum	pH adj. to 25 deg C	Potassium	Sodium	Sulfate	Antimony	Calcium	Chloride	Copper	Iron	Lead	Magnesium	pHadj. to 25 deg C	Potassium	Sodium	- 16.4
Analysis Date	SW6010C 10/4/2021 15:55	10/4/2021 15:55	9/23/2021 3:52	10/4/2021 15:55	10/4/2021 15:55	10/5/2021 9:24	10/4/2021 15:55	10/7/2021 13:41	SW6010C 10/4/2021 15:55	SW6010C 10/4/2021 15:55	9/24/2021 23:21	10/5/2021 9:41	10/5/2021 9:41	9/23/2021 0:02	10/5/2021 9:41	10/5/2021 9:41	10/5/2021 9:41	10/5/2021 9:41	SW9045D 10/7/2021 13:41	10/5/2021 9:41	10/5/2021 9:41	9/24/2021 20:37	10/5/2021 9:44	10/5/2021 9:44	9/23/2021 0:19	10/5/2021 9:44	10/5/2021 9:44	10/5/2021 9:44	10/5/2021 9:44	10/7/2021 13:41	10/5/2021 9:44	10/5/2021 9:44	LT OF SCOTION OF
Method	SW6010C	SW6010C		SW6010C	SW6010C	SW6010C	SW6010C :	SW9045D	SW6010C	SW6010C	_	_	SW6010C	SW9056	SW6010C	SW6010C	SW6010C	SW6010C	SW9045D	SW6010C	SW6010C	SW9056	SW6010C	SW6010C	-	SW6010C	SW6010C	SW6010C		SW9045D	SW6010C	SW6010C	
Sample Code	SSTRNG001_SEP21C-09142021	SSTRNG001_SEP21C-09142021	SSTRNG001_SEP21C-09142021	SSTRNG001_SEP21C-09142021	SSTRNG001_SEP21C-09142021		SSTRNG001_SEP21C-09142021	SSTRNG001_SEP21C-09142021	SSTRNG001_SEP21C-09142021	SSTRNG001_SEP21C-09142021	SSTRNG001_SEP21C-09142021	SSTRNG002_SEP21-09142021		SSTRNG002_SEP21-09142021	SSTRNG002_SEP21-09142021	SSTRNG002_SEP21-09142021	SSTRNG003_SEP21-09142021	SSTRNG003_SEP21-09142021		SSTRNG003_SEP21-09142021	SSTRNG003_SEP21-09142021	SSTRNG003_SEP21-09142021		SSTRNG003_SEP21-09142021	SSTRNG003_SEP21-09142021	SSTRNG003_SEP21-09142021	Г						
Range	Tango	Tango	Tango	Tango	Tango	Tango	Tango	Tango	Tango	Tango	Tango	Tango	Tango	Tango	Tango	Tango	Tango	Tango	Tango	Tango	Tango	Tango	Tango	Tango	Tango	Tango	Tango	Tango	Tango	Tango	Tango	Tango	,

Detection Limit Units	mg/kg	pH units		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	pH units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg						
Quantitation Limit	2.2	110	35	5.5	88	66'0	33	0.1		330	550	58	2.3	110	32	5.7	90	1	34	1.0	340	570	53	32	53	34	56	2,3	120	38	5.8	92	1
Reporting Detection Limit	1.7	55	35	0.88	22	0.88	22	0.1		180	110	29	1.7	57	32	0.9	23	0.9	23	0.1	180	110	26	32	26	34	28	1.7	58	38	0.92	23	0.92
Method Detction Limit	0.81	16	13	0.24	9.1	0.34	8.7	0.1		45	32	11	0.83	16	12	0.25	9.3	0.35	6	1.0	46	33	2.6	12	9.7	ध	10	0.85	15	15	0.25	9.6	0.36
Qualifiers	n	500	ML			ø	100	ΗF				JMB	э		JM			a		HF		1	JB	ML	1		×	n	- 36	1			a
Detection	z	٨	٨	٨	٨	٨	٢	٨	;	> ,	~	>	z	٢	۲	٨	Y	٨	٨	Y	٨	Y	٨	Y	Y	¥	*	z	٢	٨	٢	٢	۲
OMMP Action Level Mg/Kg	300			10,000		3,000					Ì		300			10,000		3,000										300			10,000		3,000
Units	mg/kg	pH units		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	pH units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg						
Result	1.7	1400	27	13	15000	33	1800	5.7		920	ć	15	1.7	1200	27	12	13000	31	1600	5.7	860	65	18	26.7	17	602	517	1.7	1400	27	13	11000	31
Analyte	Antimony	Calcium	Chloride	Copper	Iron	Lead	Magnesium	pH adj. to 25	degC	Potassium	Mulbos	Sulfate	Antimony	Calcium	Chloride	Copper	Iron	Lead	Magnesium	pHadj. to 25 deg C	Potassium	Sodium	Sulfate	Chloride	Sulfate	Chloride	Sulfate	Antimony	Calcium	Chloride	Copper	Iron	Lead
Analysis Date	10/5/2021 9:47	10/5/2021 9:47	9/23/2021 0:35	10/5/2021 9:47	10/5/2021 9:47	10/5/2021 9:47	10/5/2021 9:47	SW9045D 10/7/202113:41		10/5/2021 9:47	10/5/2021 9:4/	9/24/2021 21:07	10/5/2021 9:51	10/5/2021 9:51	9/23/2021 0:52	10/5/2021 9:51	10/5/2021 9:51	10/5/2021 9:51	10/5/2021 9:51	SW9045D 10/7/2021 13:41	10/5/2021 9:51	10/5/2021 9:51	9/24/2021 21:22	9/23/2021 1:08	9/24/2021 21:37	9/23/2021 1:41	9/24/2021 22:05	10/5/2021 9:54	10/5/2021 9:54	9/23/2021 2:30	10/5/2021 9:54	10/5/2021 9:54	10/5/2021 9:54
Method	SW6010C	SW6010C	SW9056	SW6010C	SW6010C	-	SW6010C	SW9045D		SWEDIOC		_	SW6010C	SW6010C	SW/9056	SW6010C	SW6010C	SW6010C	SW6010C	SW9045D	SW6010C	SW6010C	SW/9056 §	SW9056	SW/9056 §	3209/W2	SW/9056	SWIGOLOC	SW/6010C	SW/9056	SW/6010C	SW/6010C	SW6010C
Sample Code	SSTRNG004_SEP21-09142021		SSTRNG004 SEP21-09142021	551KN G004_SEP21-09142021	SSTRNG004_SEP21-09142021	SSTRNG005_SEP21-09142021	SSTRNG005_SEP21-09142021LR	SSTRNG005_SEP21-09142021LR	SSTRNG005_SEP21-09142021SD	SSTRNG005_SEP21-09142021SD	SSTRNG006_SEP21-09142021	SSTRNG006_SEP21-09142021	SSTRNG006_SEP21-09142021	SSTRNG006_SEP21-09142021	SSTRNG006_SEP21-09142021																		
Range	Tango		Tango	lango	Tango	Tango	Tango	Tango	Tango	Tango	Tango	Tango	Tango	Tango																			

Range	Sample Code	Method	Analysis Date	Analyte	Result	Units	OMMP Action Level Mg/Kg	Detection Flag	Qualifiers	Method Detction Limit	Method Reporting Detction Detection Limit Limit	OMMP Detection Qualifiers Method Reporting Quantitation Detection Action Flag Detection Detection Limit Limit Units Level Limit Mg/Kg	Detection Limit Units
Tango	SSTRNG006_SEP21-09142021	SW6010C	10/5/2021 9:54	Magnesium	1400	mg/kg		۲	2	9.2	23	35	mg/kg
Tango	SSTRNG006_SEP21-09142021	SW9045D	SW9045D 10/7/2021 13:41	pHadj. to 25 deg C	6,5	pH units		*	ΗF	1.0	1.0	0.1	pH units
Tango	SSTRNG006_SEP21-09142021	SW/6010C	SW6010C 10/5/2021 9:54	Potassium	760	mg/kg		Y		47	130	350	mg/kg
Tango	SSTRNG006_SEP21-09142021	SW6010C	SW6010C 10/5/2021 9:54	Sodium	73	mg/kg		*	1	33	120	580	mg/kg
Tango	SSTRNG006_SEP21-09142021		SW9056 9/24/2021 22:21	Sulfate	15	mg/ltg		٨	JMB	12	32	64	mg/kg
Notes:			2		2	50 10			8			8	52
µg/L. – micro,	μμ/L – microspann(s) per liter												
U - not detected	ted	III - Licld ps	III – I field parameter with a holding time of 15 minutes. Test performed by laboratory at client's request.	ing time of 15 mi	mutes. Ter	st performex	d by laboral	'ory at chent's	request.				
M - manual i	M = manual integrated compound	Q -One of 1	Q = One or more quality control criteria failed.	criteria failed.									
D-reported v	D - reported value is from a dilution	B - Blank of	B - Blank contamination: The analyte was detected above one-half the reportinglimit in an associated blank.	unlyte was detected	od above (me-half the	reportingly	nut in an asso	ciated blank.				
J - estimated value	value	4 - MS, MS	4- MS., MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not applicable.	nt in the original	sample is	proster than	n 4 times th	ie matrix spilo	e concentratio	on therefore	n, control limit	its are not applies	able.
JI = Estimate	J1 = Estimated: The quantitation is an estimation due to discrepancies.	ue to discrepan	cies in meeting certa	in meeting certain analyte-specific quality control criteria.	Te quality	connol crit	teria.						

Small Arms Range Sampling Reports

Lysimeter Sampling Results

Fall 2021

Range	Sample Code	Method	Analysis Date	Analyte	Result Units	Units	Detection Qualifier	Qualifier	OMMP	Method	Reporting	Quantitation	Detection
							Flag		Action Level	Detection	Detection	Limit	Limit Units
India	LYIRNG001_SEP21-09212021	SM2320B	9/29/2021 20:50	Alkalinity	10	l/Bn	٢			3.1	6.4	10	l/Bn
India	LYIRNG001_SEP21-09212021	SW6010C	10/7/2021 3:43	Antimony	12	I/Bn	N	n	9	5.2	12	20	ng/l
India	LYIRNG001_SEP21-09212021	SW/6010C	10/7/2021 3:43	Calcium	1300	I/Bn	٨			78	160	1000	ug/l
India	LYIRNG001_SEP21-09212021	SW9056	9/29/2021 17:15	Chloride	1.5	l/Bn	٨	ML		1	2.5	m	l/Bn
India	LYIRNG001_SEP21-09212021	SW6010C	10/7/2021 3:43	Copper	7.9	l/gu	٨	I	1,300	4.2	10	15	ng/l
India	LYIRNG001_SEP21-09212021	SM5310B	10/4/2021 23:26	Dissolved	3.4	l/Bn	٨			0.35	0.8	ल	ug/]
				Organic Carbon		2							12
India	LYIRNG001_SEP21-09212021	SW6010C	10/7/2021 3:43	Iron	29	l/∄n	٨	-	0,82	22	85	100	l/Bn
India	LYIRNG001_SEP21-09212021	SW6010C	10/7/2021 3:43	Lead	6	l/Bn	z	5	15	2.7	6	15	l/Bn
India	LYIRNG001_SEP21-09212021	SW6010C	10/7/2021 3:43	Magnesium	420	l/Bn	٢	ſ		26	60	500	l/Bn
India	LYIRNG001_SEP21-09212021	E365.4	10/11/2021 13:10	Phosphates,	0.072	l/gu	٨	ſ		0.041	0.057	0.1	ug/l
India	I VIRNG001 SFP21-09212021	SW6010C	10/7/0713:43	Potassium	066	l/an	٨	-		240	940	3000	llan.
India		DOTOONS	10/2/2021 2:42	Codiana -	00000	1/20	. >	-	232	2.10	1000	EOOD	- Nan
India	LYIRNGOOL SEP21-09212021	SW9056	9/29/2021 17:15	Sulfate	1	l/an	- >			1	2.5	5	ng/l
India	LYIRNG002 SEP21-09212021	SM2320B	9/29/2021 20:39	Alkalinity	17	l/sh	٨			3.1	64	10	l/an
eipul	LYIRNG002 SEP21-09212021	SW60L0C	10/7/2021 4:00	Antimony	12	l/an	Z	5	9	5.2	1	2	ng/l
India	LYIRNG002 SEP21-09212021	SW/6010C	10/7/2021 4:00	Calcium	14000	l/Bn	۲			78	160	1000	l/Bn
India	LYIRNG002_SEP21-09212021	SW9056	9/29/2021 17:32	Chloride	4.8	l/Bn	٨	W		1	2.5	m	l/gn
India	LYIRNG002_SEP21-09212021	SW6010C	10/7/2021 4:00	Copper	270	I/Bn	٧		1,300	4.2	10	15	ug/I
India	LYIRNG002_SEP21-09212021	SM5310B	10/5/2021 0:11	Dissolved	13	l/Bn	۲			0.35	0.8	Ţ	l/Bn
				Organic Carbon									
India	LYIRNG002_SEP21-09212021	SW6010C	10/7/2021 4:00	Iron	44	l/Bn	٨	1		22	85	100	l/gn
India	LYIRNG002_SEP21-09212021	SW/6010C	10/7/2021 4:00	Lead	9	l/gn	N	n	15	2.7	6	15	l/gn
India	LYIRNG002_SEP21-09212021	SW6010C	10/7/2021 4:00	Magnesium	3800	l/Bn	٢			26	60	500	ug/l
India	LYIRNG002_SEP21-09212021	E365.4	10/11/2021 13:40	Phosphates, Total as P	7.4	l/₿n	٨	a		0.41	0.57	т	l/Bn
India	LYIRNG002_SEP21-09212021	SW6010C	10/7/2021 4:00	Potassium	2200	l/gu	٨	1		240	940	3000	ug/l
India	LYIRNG002_SEP21-09212021	SW6010C	10/7/2021 4:00	Sodium	4200	l/gu	٨	ſ		370	1000	5000	ug/l
India	LYIRNG002_SEP21-09212021	SW9056	9/29/2021 17:32	Sulfate	16	l/Bn	Y			1	2.5	5	l/gn
Juliet 1	LVJRNG001_SEP21_FD-09212021_SM23208	SM2320B	9/29/2021 2:53	Alkalinity	35	l/gn	۲		6	3.1	6.4	10	ug/l
Juliet L	LYJRNG001_SEP21 FD-09212021 SW6010C	SW/6010C	10/7/2021 4:03	Antimony	12	l/gn	N	D	9	5.2	12	20	I/Su
Juliet 1	LYJRNG001_SEP21 FD-09212021 SW6010C	SW6010C	10/7/2021 4:03	Calcium	6700	l/gn	٨	0832	5988 1	78	160	1000	ug/l
1.1	LYJRNG001_SEP21 FD-09212021		9/29/2021 17:48	Chloride	3.3	l/gn	۲	W		1	2.5	гð	ug/l
Juliet 1	LYJRNGOD1 SFP71 FD-09712021	SW6010C	10/7/2021 4:03	Copper	10	l/gn	z	n	1,300	4.2	10	15	ug/l

_	Limit Units	l/Bn		l/Bu	l/Bn	l/gn	l/9n		ug/l	ug/l	l/gn	ug/l	ug/l	ug/l	l/₫n	ug/l	ug/l		l/gn	ug/I	l/Bn	l/gn	ng/l	ug/l	ng/l								
Quantitation	Limit	Ţ		100	15	500	1.0		3000	5000	5	10	20	1000	σ	15	1		100	15	2005	0.1	3000	5000	s	DI	20	1000	в	15	Ţ		
Reporting	Detection	8.0		85	6	60	0.057		940	1000	2.5	6.4	12	150	2.5	10	0.8		85	6	8	0.057	940	1000	2.5	6.4	12	160	2.5	10	8.0		
Method	Detection	0.35		22	2.7	26	0.041		240	370	1	3.1	5.2	78	1	4.2	0.35		22	2.7	26	0.041	240	370	1	3.1	5.2	78	1	4.2	0.35		The second se
OMMP	Action Level	8	10 A		15		10	- 2/2	60 10				6	55 5	- 20	1,300			0.0	15					50 50	(C	6			1,300	i.		
Qualifier				n	n		n		U	I	U		U		M	n			n	5		n	n	1	U		U		U	U			
Detection	Flag	٨		N	N	٢	z		N	۷	N	٢	N	۲	۲	N	٨		z	z	۲	z	z	٧	N	۲	N	٧	N	N	۲		1
-		l/Bn	6	I/Bn	l/Bn	l/Bn	l/Bn		l/gn	I/Bn	ug/t	l/Bn	I/3n	ug/I	l/Bn	I/Bn	l/Bn		I/Bn	I/Bn	l/Bn	l/Bn	l/Bn	I/Bn	l/gn	l/Bn	ug/l	l/Bn	ug/I	l/gn	l/Bn		
Result Units		4.1		85	б	3600	0.057		940	2600	2.5	36	12	6700	3.3	10	4.2		85	თ	3600	0.057	940	2600	2.5	32	12	4700	2.5	10	3.6		
Analyte		Dissolved	Organic Carbon	Iron	Lead	Magnesium	Phosphates,	Total as P	Potassium	Sodium	Sulfate	Alkalinity	Antimony	Calcium	Chloride	Copper	Dissolved	Organic	Iron	Lead	Magnesium	Phosphates, Total as P	Potassium	Sodium	Sulfate	Alkalinity	Antimony	Calcium	Chloride	Copper	Dissolved	Organic Carbon	
Analysis Date		10/5/2021 0:26		10/7/2021 4:03	10/7/2021 4:03	10/7/2021 4:03	10/11/2021 12:55		10/7/2021 4:03	10/7/2021 4:03	9/29/2021 17:48	9/29/2021 20:34	10/7/2021 5:19	10/7/2021 5:19	9/30/2021 1:12	10/7/2021 5:19	10/5/2021 5:25		10/7/2021 5:19	10/7/2021 5:19	10/7/2021 5:19	10/13/2021 12:35	10/7/2021 5:19	10/7/2021 5:19	9/30/2021 1:12	9/29/2021 20:55	10/7/2021 4:07	10/7/2021 4:07	9/29/2021 18:05	10/7/2021 4:07	10/5/2021 1:10		Contraction of the second seco
Method		SM5310B		SW6010C		SW6010C	E365.4		SW6010C	_	SW9056	SM2320B	SW6010C	SW6010C	SW/9056	SW6010C	SM5310B		SW6010C	SW6010C	SW6010C	E365,4	SW6010C	SW6010C	SW/9056	SM2320B	SW6010C	SW6010C	SW9056	SW6010C	SM5310B		the strate of science
Sample Code		LYJRNG001_SEP21 FD-09212021		LYIRNG001_SEP21 FD-09212021 SW6010C	LYJRNG001_SEP21 FD-09212021 SW6010C	LYJRNG001_SEP21 FD-09212021 SW6010C	LYJRNG001_SEP21 FD-09212021		LYJRNG001_SEP21 FD-09212021	LYJRNG001_SEP21 FD-09212021 SW6010C	LYJRNG001_SEP21 FD-09212021	LYJRNG001_SEP21-09212021	LYJRNG001_SEP21-09212021	LYJRNG001_SEP21-09212021	LYJRNG001_SEP21-09212021	LYJRNG001_SEP21-09212021	LYJRNG001_SEP21-09212021		LYJRNG001_SEP21-09212021	LYJRNG001_SEP21-09212021	LYJRNG001_SEP21-09212021	LYJRNG001_SEP21-09212021	LYJRNG001_SEP21-09212021	LYJRNG001_SEP21-09212021	LYJRNG001_SEP21-09212021	LYJRNG002_SEP21-09212021	LYJRNG002_SEP21-09212021	LYJRNG002_5EP21-09212021	LYJRNG002_SEP21-09212021	LYJRNG002_SEP21-09212021	LYJRNG002_SEP21-09212021		一部務委員会部委員会 法保護部分 法有法律法法
Range		Juliet		Juliet	Juliet	Juliet	Juliet		Juliet	Juliet	Juliet	Juliet	Juliet	Juliet	Juliet	Juliet	Juliet		Juliet	Juliet	Juliet	Juliet	Juliet	Juliet	Juliet	Juliet	Juliet	Juliet	Juliet	Juliet	Juliet		

Magnesium
10/11/2021 13:11 Phosphates, Total as P
10/7/2021 4:07
9/29/2021 18:05
9/29/2021 21:01
10/7/2021 4:24
10/7/2021 4:24
9/29/2021 18:21
10/7/2021 4:24
10/5/2021 1:25
2
10/7/2021 4:24
10/7/2021 4:24
10/7/2021 4:24 Magnesium
10/11/2021 13:00 Phosphates, Total as P
-
9/29/2021 18:21
9/29/2021 20:44
10/7/2021 4:27
10/7/2021 4:27
9/29/2021 20:00
10/7/2021 4:27
1 1:40
10/7/2021 4:27
10/7/2021 4:27
10/7/2021 4:27 Magnesium
10/11/2021 12:53 Phosphates, Total as P
10/7/2021 4:27
10/7/2021 4:27

Detection Limit Units	l/an	ng/l	l/Bn		ug/l	ug/l	ng/l	ug/l	I/8n	ug/l	ug/l	l/Bn	ng/l		ug/l	ug/l	ug/I	l/Bn		ug/I	ug/l	ug/I	ug/l	l/8n	ug/l	ug/l	ug/l	l/3n		ug/l	l/gu	l/Bn	l∕₿n	l/Bn
Quantitation Limit	15	200	0.1		3000	5000	ъ	10	20	1000	m	15	1		100	15	500	1.0	0000	3000	5000	a	10	20	1000	3	15	H		100	15	500	0.1	3000
Reporting Detection	6	33	0.057		940	1000	2.5	6.4	12	160	2.5	10	0.8		85	ი	60	0.057	010	0th	1000	2.5	6.4	12	160	2.5	10	0.8		85	9	60	250.0	940
Method Detection	2.7	26	0.041		240	370	1	3.1	5.2	78	1	4.2	0.35		22	2.7	25	0.041	010	240	370	1	3.1	5.2	78	1	4.2	0.35		22	2.7	26	0.041	240
OMMP Action	15					275	576		9			1,300				15		10						9	33.25	- 31	1,300				15			
Qualifier	,	-	D		Л	2	n		þ		M	п			п	Þ		n	1		-	-	1	n	1	10	n			-	n	1	D	
Detection Flag	z	7	z		۲	٧	N	٨	z	٨	٢	N	۲		N	z	٨	z		Z	7	>	٢	z	٨	٨	N	7		٨	N	٢	z	×
	l/an	l/an	l/Bn		ug/I	ug/l	l∕₿n	l/Bn	I/8n	ug/I	ug/l	l/Bn	l/3n		I/an	l/Bn	l/gn	l/Bn	10	1gn	l/gn	l/gn	ug/l	l/gn	l/Bn	ug/I	l/Bn	∕∂n		l/Bn	I/Bn	I/Bn	l/gu	ug/I
Result Units	0	480	0.057		630	2200	2.5	53	12	18000	5.1	10	2		85	σ	1700	0.057	010	940	4300	2.8	9	12	880	5.1	10	3.3		30	6	220	0.057	3800
Analyte	Lead	Magnesium		Total as P	Potassium	Sodium	Sulfate	Alkalinity	Antimony		Chloride	Copper	Dissolved	Organic	Iron	Lead	Magnesium		Total as P	Potassium	Sodium	Sulfate	Alkalinity	Antimony	Calcium	Chloride	Copper	Dissolved	Organic Carbon	Iron	Lead	Magnesium	Phosphates, Total as P	
Analysis Date	10/7/2021 5:16	10/7/2021 5:16	10/13/2021 12:33		10/7/20215:16	10/7/20215:16	9/30/2021 0:06	9/29/2021 3:03	10/7/2021 4:41	10/7/2021 4:41	9/29/2021 21:54	10/7/2021 4:41	10/5/2021 2:41		10/7/2021 4:41	10/7/2021 4:41	10/7/2021 4:41	10/13/2021 12:18	ALL POOL TAK	10/ // 2021 4:41	10/7/2021 4:41	9/29/2021 21:54	9/29/2021 20:29	10/7/2021 4:45	10/7/2021 4:45	9/29/2021 22:44	10/7/2021 4:45	10/5/2021 2:56		10/7/2021 4:45	10/7/2021 4:45	10/7/2021 4:45	10/13/2021 12:22	10/7/2021 4:45
Method	SW6010C	SW6010C	E365.4		SW6010C	SW6010C	SW/9056	SM2320B	SW6010C	SW6010C	SW/9056	SW6010C	SM5310B		SW6010C	SW6010C	SW6010C	E365.4		SWBULLOC	SW6010C	SW9056	SM2320B	SW6010C	SW6010C	SW9056	SW6010C	SM5310B		SW6010C	SW6010C	SW6010C	E365.4	SW/6010C
Sample Code	LYLRNG002 SEP21-09232021	SEP21-09232021	LYLRNG002_SEP21-09232021		LYLRNG002_SEP21-09232021	LYLRNG002_SEP21-09232021	LYLRNG002_SEP21-09232021	LYSRNG001_SEP21-09222021	LYSRNG001_SEP21-09222021		LYSRNG001_SEP21-09222021	LYSRNG001_SEP21-09222021	LYSRNG001_SEP21-09222021		LYSRNG001 SEP21-09222021	LYSRNG001_SEP21-09222021	LYSRNG001_SEP21-09222021	LYSRNG001_SEP21-09222021	PUCCHARGE FERSA SOCIALS				LYSRNG002_SEP21-09222021	LYSRNG002_SEP21-09222021	LYSRNG002_SEP21-09222021	LYSRNG002_SEP21-09222021	LYSRNG002_SEP21-09222021	LYSRNG002_SEP21-09222021		LYSRNG002_SEP21-09222021	LYSRNG002_SEP21-09222021	LYSRNG002_SEP21-09222021	LYSRNG002_SEP21-09222021	LYSRNG002_SEP21-09222021
Range	Líma	Lima	Lima		Lima	Lima	Lima	Sierra	Sierra	Sierra	Sierra	Sierra	Sierra		Sierra	Sierra	Sierra	Sierra		SIELTA	Sierra	Sierra	Sierra	Sierra	Sierra	Sierra	Sierra	Sierra		Sierra	Sierra	Sierra	Sierra	Sierra

Range	Sample Code	Method	Analysis Date	Analyte	Result	Units	Detection	Qualifier	OMMP	Method	Reporting	Quantitation	Detection
							Flag		Action Level	Detection Limit	Detection Limit	Limit	Limit Units
Sierra	LYSRNG002_SEP21-09222021	SW6010C	10/7/2021 4:45	Sodium	2900	l/Bn	٢			370	1000	5000	ug/l
Sierra	LYSRNG002_SEP21-09222021	SW9056	9/29/2021 22:44	Sulfate	1.5	l/Bn	٢			1	2.5	5	ug/l
a Backgro	LYSBGD01_SEP21-09232021	SM2320B	9/29/2021 3:09	Alkalinity	6.6	l/Bn	٨	200 200	2 2 2	3.1	6.4	10	ug/l
a Backgri	LYSBGD01_SEP21-09232021	SWIGOLOC	10/7/2021 5:09	Antimony	12	I/8n	N	5	9	5.2	2T	20	l/8n
a Backgro	LYSBGD01_SEP21-09232021	SW6010C	10/7/2021 5:09	Calcium	3000	ug/l	٨			78	160	1000	ug/l
a Backgro	LYSBGD01_SEP21-09232021	5W9056	9/29/2021 23:33	Chloride	11	l/Bn	Y	Σ		I	2.5	m	ug/l
a Backgro	LYSEGD01_SEP21-09232021	SW6010C	10/7/2021 5:09	Copper	10	l/Bn	z	n	1,300	4.2	10	15	ug/l
a Backgro	LYSBGD01_SEP21-09232021	SM5310B	10/5/2021 4:40	Dissolved	4.5	l/Bn	٢			0.35	0,8	T	l/Bn
	6			Organic Carbon		U.							9
a Backgro	LYSBGD01_SEP21-09232021	SW6010C	10/7/2021 5:09	Iron	25	l/3n	z	Э		22	85	100	ug/l
a Backgro	LYSBGD01_SEP21-09232021	SW6010C	10/7/2021 5:09	Lead	6	l/Bn	z	Э	15	2.7	6	15	ug/I
a Backgro	LYSBGD01_SEP21-09232021	SW6010C	10/7/2021 5:09	Magnesium	700	l∕Bn	٨			26	60	500	ug/I
a Backgro	LYSBGD01_SEP21-09232021	E365.4	10/13/2021 12:28	Phosphates,	0.057	l/Bn	z	n		0.041	0,057	0.1	ug/I
				Total as P		8							
a Backgre	LYSBGD01_SEP21-09232021	SW6010C	10/7/2021 5:09	Potassium	1100	l/Bn	٨	ſ	364	240	940	3000	l/Bn
a Backgrd	LYSBGD01_SEP21-09232021	SW6010C	10/7/2021 5:09	Sodium	9300	ng/J	۲	2235	1978	370	1000	5000	ng/l
a Backgro	LYSBGD01_SEP21-09232021	SW9056	9/29/2021 23:33	Sulfate	7.1	ug/J	٢	M		1	2.5	5	ug/l
Notes: µg/L – mi	Notes: µg/L – microgrum(s) per liter												
J = The an	J = The analyte was positively identified, and the associated numerical value is the approximate concentration of the analyte in the sample as a result of associated QC criteria results	ie associated i	numerical value is the	pproximate con	centration	1 of the 2	malyte in the	sanple as a	result of ass	ociated QC' crit	eria results.		
	דווה תאוא אדה אאחת זכון לוול הכי חצה וה אמוויגאה לוהלומין דוליכה:	ilar nyus.											
JI – Estin	H - Estimated: The quantitation is an estimation due to discrepancies in moeting certain analyte-specific quality control eriteria	n due to disci	repancies in moeting co	atain analyte-sp	cette qua	lity cont	trol criteria.						
ливш – W	M - manual inlegnated compound												
The a	 The analyte was analyzed for but was not detected at a level orester than or email to the method and sample-sensetific detection limit. 	etected at a le	wel creater than or enn	al to the method	and same	ole-enec	ific detection	limit.					
			the second research second					1000					

Juliet and Kilo Ranges, STAPP bullet catcher system, Camp Edwards, Massachusetts LY=Lysimeter, MW=Monitoring Well, SS=Soil Sample

Tango Range with STAPP bullet catcher system, Camp Edwards, Massachusetts $_{LY=Lysimeter,\ MW=Monitoring\ Well,\ SS=Soil\ Sample}$

India Range, Copper Ammunition Only, Camp Edwards, Massachusetts. LY=Lysimeter, MW=Monitoring Well, SS=Soil Sample

Small Arms Range Sampling Reports

Groundwater Sampling Results

Fall 2021

Detection Limit Units	l/Bn	l/gn	l/Bn	l/Bn	ug/l	l/3n	ug/l	ug/J	l/Bn	l/gu	l/gn	l/Bn	l/Bn	l/gn	ug/l	l/gu	l/Bn	l/gn	l/ân	l/Bn	l/gn	l/Bn	l/Bn	l/Bn	l/3n	l/Bn	l/Bn	ug/l	ug/l	ug/l	l/gn	l/3n
QuantifationL imit	10	20	1000	3	15	п	100	15	500	10	3000	5000	5	10	20	1000	3	15	T	100	15	500	FO	3000	5000	5	10	20	1000	m	15	1
Reporting Limit	6.4	12	160	2.5	10	9.0	85	đh	60	0.057	940	1000	2.5	6.4	12	160	2.5	10	0.8	85	6	60	0.057	940	1000	2.5	6.4	12	160	2.5	10	8.0
Method Detection Limit	3.1	5.2	78	1	4.2	0.35	22	2.7	26	0.041	240	370	1	3.1	5.2	78	1	4.2	0.35	22	2.7	26	0.041	240	370	1	3.1	5.2	78	1	4.2	35.0
OMMP Action Level		m			650			7.5							3			650			7.5							3			650	
Qualifiers	-	5			0	þ		n		Þ	-		ſ	ſ	n		M	n	-		n		n	ſ				n		W	n	ſ
Detection Flag	٨	z	٨	٨	N	z	Y	N	Y	z	٨	Y	¥	Y	N	٨	γ	z	٨	Y	N	Y	Z	Y	٢	٨	Y	z	Y	۲	z	Y
Result Units	l/Bn	I/Bn	l∕8n	l∕8n	ug/]	l/Bn	l/Bn	ng/l	l/gn	l/gu	l/3⊓	l/Bn	l/Bn	l/gn	l/Bn	l/Bn	ug/J	ug/J	l/gu	l/Bn	l/8n	ug/]	l∕8n	l/gn	l/8n	l∕gu	ug/l	ng/l	ug/l	ug/l	ug/J	l∕₿n
Result	1.6	12	2300	9.8	10	0.8	1200	6	1500	0.057	730	7400	4.7	72	12	2000	83	10	0.35	160	9	1500	0.057	570	5400	6.1	11	12	2500	6.1	10	0.53
Analyte	Alkalinity	Antimony	Calcium	Chloride	Copper	Dissolved Organic Carbon	Iron	Lead	Magnesium	Phosphates, Total as P	Potassium	Sodium	Sulfate	Alkalinity	Antimony	Calcium	Chloride	Copper	Dissolved Organic Carbon	Iron	Lead	Magnesium	Phosphates, Total as P	Potassium	Sodium	Sulfate	Alkalinity	Antimony	Calcium	Chloride	Copper	Dîssolved Organic Carbon
Analysis Date	9/24/2021 19:57		9/28/2021 20:49	9/26/2021 1:43	9/28/2021 20:49	10/11/2021 13:40	9/28/2021 20:49	9/28/2021 20:49	9/28/2021 20:49	10/7/2021 12:18	9/28/2021 20:49	9/28/2021 20:49	9/26/2021 1:43	9/24/2021 19:15	9/28/2021 20:37	9/28/2021 20:37	10/8/2021 18:00	9/28/2021 20:37	10/11/2021 12:33	9/28/2021 20:37	9/28/2021 20:37	9/28/2021 20:37	10/7/2021 12:17	9/28/2021 20:37	9/28/2021 20:37	10/8/2021 18:00	9/24/2021 19:40	9/28/2021 20:30	9/28/2021 20:30	10/8/2021 17:30	9/28/2021 20:30	10/5/2021 6:10
Method	SM2320B	_		SW9056	SW6010C	SM5310B	SW6010C	_		E365.4	SW6010C	SW6010C	SW9056	SM2320B	SW6010C	SW6010C	SW9056	SW6010C	SM53108 10/11/202	SW6010C	See. 2	SW6010C	E365.4	SW6010C	SW6010C	SW9056	SM2320B	SW6010C	SW6010C		SW6010C	SM5310B
Sample Code	MW-468S_SEP21-09162021			MW-4685_SEP21-09162021	MW-4685_SEP21-09162021	MW-4685_SEP21-09162021	MW-4685_SEP21-09162021	MW-4685_SEP21-09162021	-	MW-4685_SEP21-09162021	MW-4685_SEP21-09162021	MW-4685_SEP21-09162021	MW-4685_SEP21-09162021	MW-6395_SEP21-09202021	MW-6395_SEP21-09202021	MW-6395_SEP21-09202021	MW-6395_SEP21-09202021	MW-6395_SEP21-09202021	MW-6395_SEP21-09202021	MW-6395_SEP21-09202021		MW-6395_SEP21-09202021	MW-6395_SEP21-09202021	MW-6395_SEP21-09202021	MW-6395_SEP21-09202021	MW-6395_SEP21-09202021		MW-4715_SEP21 FD-09172021			MW-471S_SEP21 FD-09172021	MW-4715_SEP21 FD-09172021
Range	Echo	Echo	Echo	Echo	Echo	Echo	Echo	Echo	Echo	Echo	Echo	Echo	Echo	India	India	India	India	India	India	India	India	India	India	India	India	India	Juliet	Juliet	Juliet	Juliet	Juliet	Juliet

Method Reporting Quantitation Detection Detection Limit Limit Units Limit	22 85 100 ug/l	2.7 9 15 ug/l	26 60 500 ug/l	0.041 0.057 0.1 ug/l	240 940 3000 ug/l	370 1000 5000 ug/l	1 2.5 5 ug/l	10	5.2 12 20 ug/l	78 160 1000 ug/l	2.5 3		0.35 0.8 1 ug/l	22 85 100 ug/l	85 9	85 100 9 15 60 500	85 100 9 15 60 500 1 0.057 0.1	85 100 9 15 60 500 0.057 0.1 940 3000	85 100 9 15 60 500 0.057 0.1 940 3000 1000 5000	85 100 9 15 60 500 0.057 0.1 940 3000 1000 5000 2.5 5	85 100 8 9 15 15 60 500 0.1 940 3000 1000 1000 5000 1000 1000 5000 12.5 5 12 20 20 5	85 100 8 9 15 15 60 500 50 61 500 50 940 3000 100 1000 5000 5 1000 5000 1000 1000 5000 1000 12 5 5 160 1000 1000	85 100 8 9 15 15 60 500 50 940 3000 1000 940 3000 1000 1000 5000 5 2.5 5 20 160 1000 2000 2.5 3 3	85 100 8 9 15 16 60 500 50 61 3000 3000 940 3000 5000 1000 5000 50 1000 5000 1000 12 2.5 5 15 3.5 3 100 1000 15	85 100 9 15 60 500 60 500 940 3000 1000 5000 2.5 5 15 1000 100 1000 2.5 3 100 1000 100 5000 160 1000 2.5 3 10 15 10 15 0.8 1	85 100 8 9 15 100 60 500 500 940 3000 3000 1000 5000 5 2.5 5 20 160 1000 1000 2.5 3 3 100 1000 15 0.8 1 0.8 10 35 3 85 100 10	85 100 8 9 15 100 15 60 500 <t< th=""><th>85 100 8 9 15 100 15 60 500 500 500 500 940 3000 3000 100 5000 500 1000 5000 5000 100 100 100 100 2.5 5 2.0 15 15 15 15 10 2.5 3</th><th>85 100 8 9 15 100 60 500 0.1 940 3000 3000 940 3000 500 1000 5000 500 1000 5000 100 2.5 5 100 10 1000 15 2.5 3 3 10 100 100 85 100 1 9 15 10 60 500 0.1 0.057 0.1 0.1</th><th>85 100 8 9 15 100 60 500 0.1 940 3000 3000 940 3000 1000 2.5 5 1 12 2.5 5 12 2.5 3 10 1000 3 2.5 3 3 12 2.5 5 10 15 1 0.8 1 15 9 15 100 85 100 500 60 500 0.1 0.057 0.1 3000</th><th>85 100 8 9 15 100 60 500 0.1 940 3000 100 940 3000 100 940 3000 100 1000 5000 500 12 2.5 5 12 2.6 3 10 100 500 85 100 1 940 3000 0.1 940 3000 1 940 3000 10</th><th>85 100 8 9 15 100 60 500 0.1 940 3000 100 940 3000 1000 940 3000 1000 1000 5000 500 12 2.5 5 10 15 3 10 10 15 1 85 100 15 1 940 3000 0.1 3 3 2.5 5 3 3 3 2.6 100 15 1 1 940 3000 0.1 3000 3000 1000 5000 3 3 3 2.5 5 15 3 3 2.5 5 15 3 3 2.55 5 3 3 3 2.55 5 3 3 3 3</th></t<>	85 100 8 9 15 100 15 60 500 500 500 500 940 3000 3000 100 5000 500 1000 5000 5000 100 100 100 100 2.5 5 2.0 15 15 15 15 10 2.5 3	85 100 8 9 15 100 60 500 0.1 940 3000 3000 940 3000 500 1000 5000 500 1000 5000 100 2.5 5 100 10 1000 15 2.5 3 3 10 100 100 85 100 1 9 15 10 60 500 0.1 0.057 0.1 0.1	85 100 8 9 15 100 60 500 0.1 940 3000 3000 940 3000 1000 2.5 5 1 12 2.5 5 12 2.5 3 10 1000 3 2.5 3 3 12 2.5 5 10 15 1 0.8 1 15 9 15 100 85 100 500 60 500 0.1 0.057 0.1 3000	85 100 8 9 15 100 60 500 0.1 940 3000 100 940 3000 100 940 3000 100 1000 5000 500 12 2.5 5 12 2.6 3 10 100 500 85 100 1 940 3000 0.1 940 3000 1 940 3000 10	85 100 8 9 15 100 60 500 0.1 940 3000 100 940 3000 1000 940 3000 1000 1000 5000 500 12 2.5 5 10 15 3 10 10 15 1 85 100 15 1 940 3000 0.1 3 3 2.5 5 3 3 3 2.6 100 15 1 1 940 3000 0.1 3000 3000 1000 5000 3 3 3 2.5 5 15 3 3 2.5 5 15 3 3 2.55 5 3 3 3 2.55 5 3 3 3 3
Action Detec Level Lin	2.	7.5 2.	2	0.0	24	37	F	'n	3 5.	7.		650 4.	3	2	7.5 2.																	
		n		n	ſ	-	v		n		W	n	-	-	۲ D		~ > >	- - -	- - -	- - -	~ > ~ > ~ >	~ 5 5 7 5	~ > ~ > ×	~ > ~ > > >	- - - - - -	- - - - -			~ > ~ > > > > > > > > > >	~ > > > > > > > > > >		
Flag	٨	z	۲	z	Y	٨	۲	٨	z	٧	γ	z	>	۲	≻ z	> z >	> z > z	> z > z >	> z > z > >	> Z > Z > > > >	> z > z > > > Z	> z > z > > > Z >	> z > z > > > > z > >	> z > z > > > > z > > z	> z > z > > > > z > > z >	> z > z > > > > z > > > > > >	> z > z > > > > z > > z > > z	> z > z > > > > z > > z > > z > > z >	> z > z > > > > z > > z > z > z > z > z	> z > z > > > > z > > z > > z > z > z >	> z > z > > > z > > z > > z > > z > > z > > z > > z > > z > > z > > z > > > z >	> z > z > > > z > > z > > z > > z > > z
Result Units	l∕8n	ug/l	ug/J	l/gu	l/Bn	l/gn	∩g/i	ug/J	ug/I	l∕8n	ug/]	∩gu	l/gu	l/Bn	l/gn	l/gu l/gu	//3n 1/3n 1/3n	l/gu l/gu l/gu	l/gu l/gu l/gu l/gu	l/gu l/gu l/gu l/gu l/gu	1/8n 1/8n 1/8n 1/8n 1/8n	l/gu l/gu l/gu l/gu l/gu	ligu ligu ligu ligu ligu ligu ligu ligu	ligu ligu ligu ligu ligu ligu ligu ligu		lan	1/201 1/201 1/201 1/201 1/201 1/201 1/201 1/201 1/201 1/201 1/201 1/201 1/201 1/201					
	130	6	1900	0.057	680	4900	5.4	11	12	2600	9	10	0.55	44	4 o	44 9 2000	44 9 2000 0.057	44 9 2000 0.057 740	44 9 2000 2.000 0.057 740 5100	44 9 2000 2000 0.057 740 5100 5.1	44 9 2000 2000 0.057 740 5.1 12	44 9 2000 2000 740 5.1 12 2700 2700	44 9 0.057 740 5.1 12 2700 6.3	44 9 9 22030 22030 0.057 740 5.1 12 5.1 12 5.1 12 5.1 12 12 12 12 12 12 12 12 12 12 12 12 12	44 9 2 2000 2 2000 5.1 740 5.1 12 12 6.3 6.3 0.69 0.69	44 44 22030 22030 22030 5.1 12 5.1 12 5.1 12 5.1 12 12 10 0.69 0.69	444 9 2 2000 0.057 740 5.1 12 5.1 12 6.3 6.3 10 0.69 0.69 9	444 9 0.057 740 5.1 12 5.1 12 6.3 6.3 10 0.69 9 9 2500	44 44 0.057 740 5.1 12 5.1 12 5.3 10 0.69 9 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.657 0.057 0.	44 44 2 2000 0.057 740 5.1 12 5.1 12 5.1 12 6.3 10 6.3 10 0.69 9 9 9 830	44 44 2 2000 2 2000 5.1 5.1 12 5.1 12 5.1 12 5.1 12 5.1 10 6.3 10 0.69 9 9 9 0.057 830 0.057 4400	44 44 0.057 0.057 740 5.1 12 5.1 12 5.1 10 0.69 6.3 10 0.69 9 9 9 830 0.057 830 0.057 5.4
	Iron	Lead	Magnesium	Phosphates, Total as P	Potassium	Sodium	Sulfate	Alkalinity	Antimony	Calcium	Chloride	Copper	Dissolved Organic Carbon	Iron	Iron Lead	Iron Lead Magnesium	Iron Lead Magnesium Phosphates, Total as P	Iron Lead Magnesium Phosphates, Total as P Potassium	Iron Lead Magnesium Phosphates, Total as P Potassium Sodium	Iron Lead Magnesium Phosphates, Total as P Potassium Sodium Sulfate	Iron Lead Magnesium Phosphates, Total as P Potassium Sodium Sulfate Antimony	Iron Lead Magnesium Phosphates, Total as P Potassium Sodium Sulfate Antimony Calcium	Iron Lead Magnesium Phosphates, Total as P Potasslum Sodium Sulfate Antimony Calcium Calcium	Iron Lead Magnesium Phosphates, Total as P Potassium Sodium Sulfate Antimony Calcium Chloride Copper	Iron Lead Magnestum Phosphates, Totastum Sodium Sulfate Antimony Calcium Chloride Copper Dissolved Organic Carbon	Iron Lead Magnesium Phosphates, Total as P Potassium Sodium Sulfate Antimony Calcium Calcium Calcium Copper Dissolved Organic Carbon Iron	Iron Lead Magnesium Phosphates, Total as P Potassium Sodium Sulfate Antimony Calcium Chloride Copper Dissolved Organic Carbon Iron Iron	Iron Lead Magnesium Phosphates, Total as P Porassium Sodium Sulfate Antimony Chloride Chlorid	Iron Lead Magnesium Phosphates, Total as P Porassium Sodium Sulfate Chlorid	Iron Lead Magnesium Phosphates, Total as P Potassium Sodium Sodium Soliete Antimony Calcium Chloride Copper Dissolved Organic Carbon Iron Iron Iron Chloride Organic Carbon Organic Carbon Phosphates, Total as P Potassium	Iron Lead Magnestum Phosphates, Total as P Potasslum Sodium Sodium Chloride Copper Dissolved Organic Carbon Iron Iron Phosphates, Total as P Postasslum Postasslum	Iron Lead Magnesium Phosphates, Total as P Potassium Sodium Solitate Chloride Copper Dissolved Organic Carbon Iron Iron Iron Chloride Organic Carbon Organic Carbon Copper Dissolved Organic Carbon Solfates, Total as P Posssium Phosphates, Total as P Sodium Sodium
Anarysis Date	9/28/2021 20:30	9/28/2021 20:30	9/28/2021 20:30	10/7/2021 12:33	9/28/2021 20:30	9/28/2021 20:30	10/8/2021 17:30	9/24/2021 19:21	9/28/2021 20:13	9/28/2021 20:13	10/8/2021 17:15	9/28/2021 20:13	10/5/2021 5:55	9/28/2021 20:13	9/28/2021 20:13 9/28/2021 20:13	9/28/2021 20:13 9/28/2021 20:13 9/28/2021 20:13	9/28/2021 20:13 9/28/2021 20:13 9/28/2021 20:13 10/6/2021 13:49	9/28/2021 20:13 9/28/2021 20:13 9/28/2021 20:13 10/6/2021 13:49 9/28/2021 13:49				9/28/2021 20:13 9/28/2021 20:13 9/28/2021 20:13 10/6/2021 13:49 9/28/2021 20:13 9/28/2021 20:13 10/8/2021 20:13 9/28/2021 20:13 9/28/2021 20:00	9/28/2021 20:13 9/28/2021 20:13 9/28/2021 20:13 10/6/2021 13:49 9/28/2021 20:13 9/28/2021 20:13 10/8/2021 20:13 10/8/2021 20:10 9/28/2021 20:00 9/28/2021 20:00	9/28/2021 20:13 9/28/2021 20:13 9/28/2021 20:13 10/6/2021 13:49 9/28/2021 20:13 9/28/2021 20:13 10/8/2021 20:10 9/28/2021 20:00 9/28/2021 16:30 10/8/2021 16:30	9/28/2021 20:13 9/28/2021 20:13 9/28/2021 20:13 10/6/2021 13:49 9/28/2021 20:13 9/28/2021 20:13 9/28/2021 20:13 10/8/2021 20:00 9/28/2021 20:00 9/28/2021 20:00 10/5/2021 16:30 9/28/2021 20:00							
Method	SW6010C	SW6010C	SW/6010C	E365.4	SW6010C	SWI6010C	SW/9056	SM2320B	SW6010C	SW/6010C	SW9056	SW6010C	SM5310B	SW/6010C	SW6010C	SW6010C SW6010C	SW6010C SW6010C SW6010C E365.4	SW6010C SW6010C SW6010C E365.4 E365.4 SW6010C	SW6010C SW6010C SW6010C E365.4 E365.4 SW6010C SW6010C	SW6010C SW6010C SW6010C E365.4 E365.4 SW6010C SW6010C SW6010C	SW6010C SW6010C SW6010C E365.4 E365.4 E365.0 SW6010C SW6010C SW6010C	SW6010C SW6010C SW6010C E365.4 E365.4 E365.0 SW6010C SW6010C SW6010C SW6010C SW6010C	SW6010C SW6010C SW6010C SW6010C SW6010C SW6010C SW6010C SW6010C SW6010C SW6010C SW6010C SW6010C	SW6010C SW6010C SW6010C E365.4 E365.4 SW6010C SW6010C SW6010C SW6010C SW6010C SW6010C	SW6010C SW6010C SW6010C SW6010C SW6010C SW6010C SW6010C SW6010C SW6010C SW6010C SW6010C SW6010C	SW6010C SW6010C SW6010C E365.4 E365.4 E365.6 SW6010C SW6010C SW6010C SW6010C SW6010C SW6010C SW6010C	SW6010C SW6010C SW6010C SW6010C SW6010C SW6010C SW6010C SW6010C SM5310B SM5310B SM5310B SM5310B SM5010C	SW6010C SW6010C SW6010C E365.4 E365.4 E365.6 SW6010C SW6010C SW6010C SW6010C SW6010C SW6010C SW6010C SW6010C	SW6010C SW6010C SW6010C E365.4 E365.4 SW6010C SW9056 SW9056 SW9056 SW6010C SM5310B SW6010C SW6010C SW5310B SW6010C SW5310B SW6010C	SW6010C SW6010C SW6010C SW6010C E365.4 SW6010C SW6010C SW6010C SW6010C SW6010C SW6010C SW6010C SM6010C SW6010C SW6010C SW6010C SW6010C	SW6010C SW6010C SW6010C SW6010C E365.4 SW6010C SW6010C SW6010C SW6010C SM5310B SM6010C SW6010C SW6010C SW6010C SW6010C SW6010C	SW6010C SW6010C SW6010C SW6010C E365.4 SW6010C SW6010C SW6010C SW6010C SW6010C SM6010C SM6010C SM6010C SW6010C SW6010C SW6010C SW6010C SW6010C SW6010C
Sample Code	MW-471S_SEP21 FD-09172021 SW6010C	MW-471S_SEP21 FD-09172021 SW6010C	MW-471S_SEP21 FD-09172021	MW-471S_SEP21 FD-09172021	MW-471S_SEP21 FD-09172021	MW-4715_SEP21 FD-09172021 SW6010C	MW-471S_SEP21 FD-09172021	MW-4715_SEP21-09172021				MW-471S_SEP21-09172021	MW-4715_SEP21-09172021	MW-4715_SEP21-09172021																		
Range	Juliet	Juliet	Juliet	Juliet	Juliet	Juliet	Juliet	Juliet	Juliet	Juliet	Juliet	Juliet	Juliet	 uliet	uliet uliet	uliet uliet	uliet uliet uliet	uliet uliet uliet	uliet uliet uliet uliet	uliet uliet uliet uliet	uliet uliet uliet uliet	uliet uliet uliet uliet uliet	uuliet uuliet uuliet uuliet uuliet uuliet	Unliet Unliet Unliet Unliet Unliet Unliet	uliet uliet uliet uliet uliet	uliet uliet uliet uliet uliet uliet uliet	Juliet Juliet Juliet Juliet Juliet Juliet Juliet Juliet	Juliet Juliet Juliet Juliet Juliet Juliet Juliet Juliet Juliet	Juliet Juliet Juliet Juliet Juliet Juliet Juliet Juliet Juliet	Juliet Juliet Juliet Juliet Juliet Juliet Juliet Juliet Juliet	Juliet Juliet Juliet Juliet Juliet Juliet Juliet Juliet Juliet	Juliet Juliet Juliet Juliet Juliet Juliet Juliet Juliet Juliet Juliet

		ysis Date	Analyte	Result Units	Units	Detection Flag	Qualifiers	OMMP Action Level	Method Detection Limit	Reporting Limit	Reporting QuantitationL Limit imit	Detection Limit Units
9/28/202	2021 20:33		Antimony	12	I/Sn	z		e	5.2	12	20	ug/I
SW6010C 9/28/2021 20:33	2021 20:33		Calcium	1900	ug/l	٢			78	160	1000	l/Bn
SW9055 10/8/2021 17:45	2021 17:45	_	Chloride	7.2	ug/J	٢	M		1	2.5	3	ug/l
SW6010C 9/28/2021 20:33	2021 20:33		Copper	10	l/gn	N	n	650	4.2	10	15	l/gn
SM53108 10/11/2021 11:47	/2021 11:47	-	Dissolved Organic Carbon	0.8	ng/J	z	n		0.35	0.8	-	l/ân
SW6010C 9/28/2021 20:33	2021 20:3	m	Iron	88	l/gn	z	n		22	85	100	l/Bn
9/28/202	2021 20:3	3	Lead	6	ng/l	N	n	7.5	2.7	61	15	ug/l
SW6010C 9/28/2021 20:33	2021 20:3	m	Magnesium	2200	l/Bn	٨			26	60	200	l/gu
E365.4 10/7/2021 12:34	2021 12:3	4	Phosphates, Total as P	0.057	l/₿n	N	n		0.041	0.057	T'O	l/gu
SW6010C 9/28/2021 20:33		m	Potassium	580	l/gn	٨	ſ		240	940	3000	l/gn
SW6010C 9/28/2021 20:33	2021 20:3	m	Sodium	5700	l/3n	٨			370	1000	5000	ug/l
SW9056 10/8/2021 17:45	2021 17:4	10	Sulfate	4.6	l/Bn	Y	-		Ţ	2.5	'n	ug/l
SM5310B 10/11/2021 12:16	/2021 12:1(in.	Dissolved	26.8	l∕⊒n	Y			0.35	0.8	Ţ	ug/l
			Organic Carbon									- X-
	2021 20:02	1.11	Alkalinity	23	l∕₿n	٨	82		3.1	6.4	10	ug/l
SW6010C 9/28/2021 20:46	2021 20:4	60	Antimony	12	ug/l	z	n	m	5.2	12	20	ug/1
SW6010C 9/28/2021 20:45	2021 20:46		Calcium	4100	l/gn	۲			78	160	1000	ug/l
_	/2021 1:29		Chloride	5.5	l/gn	٢			1	2.5	Э	l/gn
SW6010C 9/28/2021 20:46	2021 20:46		Copper	7.1	ug/l	٢	-	650	4.2	10	15	ug/l
SM53108 10/11/2021 13:23	/2021 13:2	00	Dissolved Organic Carbon	0.8	l/gu	z	Þ		0.35	8.0	Ŧ	l/gu
MW-4655_5EP21 FD-09202021 SW6010C 9/28/2021 20:46	202120:4	9	Iron	2800	ug/J	٢			22	85	100	ug/l
MW-4655_SEP21 FD-09202021 SW6010C 9/28/2021 20:46	2021 20:46	40	Lead	6	l∕₿n	N	n	7.5	2.7	đ	15	l/gn
0/28/202	2021 20:4	e	Magnesium	2000	ug/]	٢			26	60	500	ug/l
E365.4 10/7/2021 12:43	2021 12:4	10	Phosphates, Total as P	0.057	ug/I	z	n		0.041	0.057	1.0	l/gu
9/28/202	2021 20:46	10	Potassium	570	ug/J	٨	-		240	940	3000	ug/l
SW6010C 9/28/2021 20:46	2021 20:46		Sodium	5900	ug/]	Υ			370	1000	5000	ug/l
SW9056 9/26/2021 1:29	/2021 1:29		Sulfate	5.3	ug/]	Y			1	2.5	5	l/Bn
	1:61 1202	0	Alkalinity	22	l/gn	Y			3.1	6.4	10	l/gn
SW6010C 9/28/2021 20:43	2021 20%	en to	Antimony	12	ug/l	z	n	e	5.2	12	20	ug/l
_	202120:	43	Calcium	4100	∩gu	λ			78	160	1000	l/gu
9/26/202		50	Chloride	5.7	Ug/J	٨			1	2.5	m	l/Bn
choc rendacia intrasus	/2021 0:0	Į										

ASIM	Sample Code	Method	Analysis Date	Analyte	Result	Units	Detection Flag	Qualifiers	OMMP Action Level	Method Detection Limit	Reporting Limit	QuantitationL imit	Detection Limit Units
Sierra	MW-4655_SEP21-09202021	SM5310B	SM5310B 10/11/2021 13:07	Dissolved Organic Carbon	8'0	ng/l	z	Þ		0.35	8.0	1	l/gu
Sierra	MW-4655_SEP21-09202021	SW6010C	9/28/2021 20:43	Iron	23	l/Bn	۲	-		22	85	100	l/Bn
Sierra	NW-4655_SEP21-09202021	SW6010C	9/28/2021 20:43	Lead	6	I/Bn	z	D	7.5	2.7	6	15	l/8n
Sierra	MW-4655_SEP21-09202021	SW6010C	9/28/2021 20:43	Magnesium	2000	l/Bn	Y			26	60	500	ug/l
Sierra	MW-4655_SEP21-09202021	E365.4	10/7/2021 12:36	Phosphates, Total as P	0.057	l∕₿n	z	Þ		0.041	0.057	0.1	l∕gu
Sierra	MW-465S_SEP21-09202021	SW/6010C	9/28/2021 20:43	Potassium	610	l/Bn	2	Ţ		240	940	3000	l/Bn
Sierra	MW-4655_SEP21-09202021	SW/6010C	9/28/2021 20:43	Sodium	5900	i/an	2			370	1000	5000	ug/l
Sierra	MW-4655_SEP21-09202021	SW9056	9/26/2021 0:05	Sulfate	Ω.	I/an	٨			1	2.5	ъ	l/gu
Sierra	MW-4665_5EP21-09202021	SM2320B	9/24/2021 19:05	Alkalinity	23	I/Bn	٨			3.1	6.4	10	l/Bn
Sierra	MW-466S_SEP21-09202021	SW6010C	9/28/2021 20:40	Antimony	12	I/Sn	z	5	m	5.2	12	20	I/Bn
Sierra	MW-4665_SEP21-09202021	SW/6010C	9/28/2021 20:40	Calcium	4400	l/gn	۲			78	160	1000	ug/l
Sierra	MW-4665_SEP21-09202021	SW9056	10/8/2021 18:15	Chloride	5	ug/I	٢	M		1	2.5	3	ug/l
Sierra	MW-4665_SEP21-09202021	SW6010C	9/28/2021 20:40	Copper	10	I∕₿n	N	n	650	4.2	10	51	ug/l
Sierra	MW-4665_SEP21-09202021	SM5310B	10/11/2021 12:50	Dissolved Organic Carbon	0.58	l/Bn	٨	7		0.35	0.5	1	l/Sn
Sierra	MW-4665_SEP21-09202021	SW6010C	9/28/2021 20:40	Iron	100	l/Bn	٨	1102		22	85	100	ug/l
Sierra	MW-4665_SEP21-09202021	SWIGOLOC	9/28/2021 20:40	Lead	6	I/Bn	z	5	7.5	2.7	6	15	ug/l
Sierra	MW-4665_SEP21-09202021	SW6010C	9/28/2021 20:40	Magnesium	1900	l/Bn	٢	1		26	60	500	ug/l
Sierra	MW-4665_SEP21-09202021	E365.4	10/7/2021 12:35	Phosphates, Total as P	0.057	l/3n	z	n		0.041	0.057	1'0	l/gu
Sierra	MW-4665_SEP21-09202021	SWE010C	9/28/2021 20:40	Potassium	650	l∕₿n	٨	I		240	940	3000	l/gu
Sierra	MW-4665_SEP21-09202021	SW6010C	9/28/2021	Sodium	7300	ug/I	٢			370	1000	5000	l/Bn
Sierra	MW-466S_SEP21-09202021	SW9056	10/8/2021 18:15	Sulfate	6.8	ug/I	٢			1	2.5	5	ug/l
Tango	MW-4675_SEP21 EB-09222021	SM2320B	9/29/2021 3:14	Alkalinity	15	I/Bn	٧			3.1	6.4	10	ug/J
Tango	MW-4675_SEP21 EB-09222021	SW/6010C	10/7/2021 5:02	Antimony	12	ug/1	N	n	e	5.2	12	20	ug/l
Tango	MW-4675_SEP21 EB-09222021	SW6010C	10/7/2021 5:02	Calcium	4500	l/gn	٢			78	160	1000	ug/l
Tango	MW-4675_SEP21 EB-09222021	5W9056	9/29/2021 23:00	Chloride	18	l/Bn	٢			1	2.5	£	ug/l
Tango	MW-4675_SEP21 EB-09222021		10/7/2021 5:02	Copper	10	I/Bn	z	n	650	4.2	10	15	ug/l
Tango	MW-4675_SEP21 EB-09222021	SM5310B	10/5/2021 4:11	Dissolved Organic Carbon	8.0	l/Bn	z	Þ		55.0	8.0	Ţ	ug/l
Tango	MW-4675_SEP21 EB-09222021	SW6010C	10/7/2021 5:02	Iron	26	ug/I	٢	ſ		22	85	100	ug/l
Tango	MW-4675_SEP21 EB-09222021	SW/6010C	10/7/2021 5:02	Lead	6	I/Bn	z	D	7.5	2.7	6	15	I/8n
Tango	MW-4675_SEP21 EB-09222021	SWE010C	10/7/2021 5:02	Magnesium	2000	l∕⊒n	٨			26	60	500	ug/l
Tango	MW-4675_SEP21 EB-09222021	E365.4	10/13/2021 12:19	Phosphates, Total as P	0.057	l/gn	z	D		0.041	0.057	0.1	l/gn

Range	Sample Code	Method	Analysis Date	Analyte	Result Units	Units	Detection Flag	Qualifiers	OMMP Action Level	Method Detection Limit	Reporting Limit	QuantitationL imit	Detection Limit Units
Tango	MW-467S_SEP21_EB-09222021_SW6010C	SW6010C	10/7/2021 5:02	Potassium	880	l/∂n	۲	ſ		240	940	3000	ng/)
Tango	MW-4675_SEP21_EB-09222021_SW6010C	SW6010C	10/7/2021 5:02	Sodium	13000	l∕₿n	Y			370	1000	5000	ug/l
Tango	MW-4675_SEP21_EB-09222021	SW/9056	9/29/2021 23:00	Sulfate	5.8	I/Bn	٢			1	2.5	5	ug/J
Tango	MW-4675_SEP21-09222021	SM2320B	9/29/2021 3:43	Alkalinity	22	l/Bn	٨			3.1	6.4	10	ug/J
Tango	MW-4675_SEP21-09222021	SWIGOLOC	10/7/2021 5:06	Antimony	12	I/Bn	z	n	6	5.2	12	20	ug/l
Tango	MW-4675_SEP21-09222021	SW/6010C	10/7/2021 5:06	Calcium	8700	ug/I	٢			78	160	1000	ug/l
Tango	MW-4675_SEP21-09222021	5W/9056	9/29/2021 23:17	Chloride	5	l/Bn	٢	Μ		1	2.5	8	ug/l
Tango	MW-4675_SEP21-09222021	SW6010C	10/7/2021 5:06	Copper	10	l/gn	N	U	650	4.2	10	15	ug/l
Tango	MW-4675_SEP21-09222021	SM5310B	10/5/2021 4:25	Dissolved	0.65	l/Bn	۲	-		0.35	8.0	Ę	ug/l
				Organic Carbon			3	ŝ			40 - 90 - 00 - 0	(Concernant of the second se
Tango	MW-4675_SEP21-09222021	SW/6010C	10/7/2021 5:06	Iron	300	l/Bn	٢			22	85	100	ug/I
Tango	MW-4675_SEP21-09222021	SW6010C	10/7/2021 5:06	Lead	6	I/Bn	z	5	7.5	2.7	6	15	ug/l
Tango	MW-4675_SEP21-09222021	SW/6010C	10/7/2021 5:06	Magnesium	3500	I/Bn	٢			26	60	500	ug/l
Tango	MW-4675_SEP21-09222021		10/13/2021 12:20	Phosphates,	0.057	l/an	z	n		0.041	0.057	1.0	ug/l
Tanen	10020200-15032 SED1001	SWR0100	30-2 LCDC/L/01	Dotaccium	010	1/011	>	-		UVC.	000	2000	in all
Tango	MWW 4676 SED1 0000001	JULUSIVIS	2010 1202/1/01	Codium	DUL 8	1/201	- >	~		370	1000	ENON	1901
Tango	NAM 4576 SEPT 2022201	POTODAXE	and tanging	culture Culture		(An	- >				D C		No.
Notes: us/L - mi	Iango MW-40/2.25F21-09222021 Notes: ug'L - microman(s) per hiter	acosine		animate	at	-Sh	H			-	3	n	- Man
J - The an	J = The analyte was positively identified, and the associated numerical value is the approximate concentration of the analyte in the sample as a result of associated (X) criteria results.	re associated 3	numerical value is the	approximale conce	o notation o	The una	dyte in the su	mple as a rest	di of assoc	ialed (XC criter	ia neulle.		
The data a	The data are valid for project use to achieve project DQOs.	jeet DQOs.											
J1 - Estin	J1 = Estimated: The quantitation is an estimation due to discrepancies in moving certain analyte-specific quality control enteria	n due to diser	vpancies in moving o	ortain analyte-spec	сійвир ой	/ control	criteria.						
M=man.	M = manual integrated compound												
U - The a	U – The analyte was analyzed for but was not detected at a level greater than or equal to the method and sample-specific detection limit.	ctected at a le	rvel greater than or equ	all to the method a	nd sample	specific	c detection his	at.					
													1

Mobility of Lead and Antimony in Shooting Range Soils:

Column Leaching Study

US Army Corps of Engineers® Engineer Research and Development Center

Mobility of Lead and Antimony in Shooting Range Soils: Column Leaching Study

Amanda J. Barker and Jay L. Clausen

February 2021

Approved for public release; distribution is unlimited.

Engineer Research and Development Center The U.S. Army Engineer Research and Development Center (ERDC) solves the nation's toughest engineering and environmental challenges. ERDC develops innovative solutions in civil and military engineering, geospatial sciences, water resources, and environmental sciences for the Army, the Department of Defense, civilian agencies, and our nation's public good. Find out more at www.erdc.usace.army.mil.

To search for other technical reports published by ERDC, visit the ERDC online library at http://acwe.sdp.sirsi.net/client/default-

Mobility of Lead and Antimony in Shooting Range Soils: Column Leaching Study

Amanda J. Barker¹ and Jay L. Clausen¹

Cold Regions Research and Engineering Laboratory (CRREL) U.S. Army Engineer Research and Development Center 72 Lyme Road Hanover, NH 03755

Final report

Approved for public release; distribution is unlimited.

Abstract

The mobility of lead (Pb) and antimony (Sb) in shooting range soils was investigated in this report. We found Sb significantly more mobile than Pb in the systems studied. Previous efforts concluded that the dominant Sb species in the system is likely Sb(V) and therefore has increased mobility at pHs above 7-8, in general. The results from this effort show that the amendment additions lime and phosphate caused an increase in Sb concentrations and had little effect on mobilizing Pb in the same systems.

DISCIAIMER: The contents of this report are not to be used for advertising, publication, or promotional purposes. Cutation of trade names does not constitute an official endorsement or approval of the use of such commercial products. All product names and trademarks cited are the property of their respective owners. The findings of this report are not to be construct as an official Department of the Army position unless so designated by other authorized documents.

DESTROY THIS REPORT WHEN NO LONGER NEEDED, DO NOT RETURN IT TO THE ORIGINATOR.

Contents

Ab	ostract	1
Fig	gures and Tables	
1	Introduction	
2	Methods	
	2.1 Experimental Setup	5
	2.2 Sample Analysis	5
3	Results and Discussion	
4	Conclusions	
5	Recommendations	
120		

Report Documentation Page

Figures and Tables

Figures

Figure 1. Concentrations of Sb as a function of pH for experiment A.	6
Figure 2. Concentrations of Pb as a function of pH for experiment A.	6
Figure 3. Concentrations of Sb as a function of pH for experiment B.	7
Figure 4. Concentrations of Pb as a function of pH for experiment B	7

Tables

Table 1. Results for experiment A (calcium hydroxide addition). 'Pb*	' indicates values are
qualitative	9
Table 2. Results for experiment B (phosphate addition). 'Pb*' indica	tes values are qualitative.
	10

1 Introduction

Mobility of lead (Pb) and antimony (Sb) in India Berm from Joint Base Cape Cod, MA soil were investigated in September, 2020 using leaching runoff procedures. Previous field efforts have shown an increase in Sb concentrations in pore water samples in select berms and ranges, while Pb concentrations remain relatively stable and low. Legacy reports describe the addition of amendments including lime and phosphate additions to the berms in an effort to stabilize metal. The pH values for pore water samples after these additions increased to approximately 8 and 9 and then have since decreased to circumneutral values. The current effort simulated conditions at Joint Base Cape Cod, including acidic rain water and soil samples, to investigate concentrations of Pb and Sb in select soil samples. Native soil (India Berm) was used and spiked with Pb and Sb mesh powders and simulated rain was flushed through columns of soil for a total of 160 runoff samples. Two amendments were used to mirror field conditions, calcium hydroxide (lime) and calcium phosphate. The report presents Pb and Sb concentrations as a function of amendment additions over time.

2 Methods

2.1 Experimental Setup

There were two separate experiments within the scope of this work, A and B. Experiment A used lime (calcium hydroxide) as an addition and Experiment B used calcium phosphate tribasic as an addition to investigate how they individually impacted Pb and Sb mobility in soil solution. Simulated rainwater was prepared using ultrapure DI water with a resistivity of 18.2 m Ω cm at 25 °C and using reagent grade chemicals as follows: 0.13 mg/L potassium nitrate, 0.0012 mg/L sodium bicarbonate, 1 mL of ultrapure 6 M nitric acid was added per every 10 L of ultrapure DI water and 0.5 mL of 5 M sodium hydroxide was added per 10 L of ultrapure DI water.

Acrylic soil columns were originally loaded with India Range Berm Face soil and packed uniformly for pressurized flow experiments. However, the flow through the soils was extremely slow and we experienced leaks when the pressure was increased to increase flow velocity. Therefore, we switched to a gravity flush system using a ceramic holder with a vacuum pump. Approximately, 200 grams of soil previously collected from the India Range berm face was loaded for each of the experiments, A and B. We used Pb and Sb mesh powder <200 mesh size for each of the spikes for both experiments and 0.1 grams were loaded. For each sample, 150 mLs of simulated rain water were flushed through the system and collected. Samples were all filtered to less than 1.6 microns using Whatman filters and acidified with ultrapure nitric acid. Samples were stored at 4°C until analysis.

2.2 Sample Analysis

Leaching runoff samples were analyzed using inductively coupled plasma-mass spectrometry (ICP-MS) at the Environmental Laboratory in Vicksburg, MS.

3 Results and Discussion

In general, Sb was mobilized to a much greater extent than Pb throughout the entirety of the experiment. Concentrations of Pb and Sb are shown plotted in Figures 1 and 2 and results are tabulated in Tables 1 and 2. The pH values of the simulated rain and the pH values for the effluent runoff samples are shown in Tables 1 and 2.

Figure 1. Concentrations of Sb as a function of pH for experiment A.

Figure 2. Concentrations of Pb as a function of pH for experiment A.

Once the soils in both experiments were spiked with Pb and Sb, concentrations of Sb were immediately mobilized to solution. Concentrations of Pb for the most part re-

mained relatively low and did not experience any mass release except at the end of Experiment B when concentrations increased significantly corresponding to a rise in pH above 9.

Figure 3. Concentrations of Sb as a function of pH for experiment B.

Antimony was particularly mobilized in soil solution after the addition of phosphate addition (Figure 4), reaching concentrations above 8 mg/L in solution. Based on previous efforts with the soils, it was determined that Sb was primarily present in the Sb(V) form (based on LC-MS/MS) therefore the slightly basic pH likely played a role in flushing Sb species into solution. Initial concentrations for Sb were low at the start with the simulated acid rain flushes and began to rise upon addition of the spike. The phosphate addition mobilized Sb to a greater extent overall than the calcium hydroxide addition, indicating pH may not be the only factor in mobilizing Sb in these systems.

anple	Date/Time		Similated can ORP (nv)				Pb (mg/L)	Estimate	Neks
	≥ 9/10/30 10:00 AM		165	6.62	34	0.0069	0.0079		India soli packed and simulated rai
	a) 9/10/20 10:10 AM	4.35	145	6.6)	22	0.0057	0.00059		
3	a 9/10/20 10:20 AM	4.35	145	6.65	23	0,0037	0.0048		
4 1	a 9/10/20 10:50 AM	4.35	143	6.63	25	0.0025	0.0037		
5	a 9/10/20 10:40 AM	4.35	145	6,67	22	0.0024	0.0035		
6 I	a 9/10/20 10:50 AM	6.35	143	6.66	23	0,0022	0.00192		
7	a 9/10/20 11:00 AM	4.35	145	6.61	25	0.0026	0.0028		
	a 9/10/20 11:10 AM	4.35	145	6.36	39	0.0026	0.0026		
9	a 9/10/20 11:20 AM	4.35	145	6.40	37	0.0035	0.0022		
	a 9/10/20 11:30 AM	4.35	145	6.51	10	0.0024	0.0030		
		4.35	145	6.79	15	0.103	0.0094		spiked with Pa/Sb powder
	 9/10/20 12:30 AM 9/10/20 12:40 PM 	4.35	145		18	0.625	0.0042		stave wat i was power
				6.75					
	# 9/11/20 10:00 AM		145	6,49	32	0.562	5:0028		
	a 9/11/20 10:10 AM	0.45	-146	6.52	31	0.609	0.0038		
	 9/11/20 10:20 AM 	4.45	146	6.60	26	0.675	0.0014		
	a 9/11/20 10:20 AM	4.45	146	6.58	27	0.791	0.0013		
17 1	8 9/11/20 10:40 AM	4.45	145	6.69	22	0.896	0.0063		
18	a 9/11/20 10:50 AM	4.45	145	6.61	24	1.00	0.0012		
19	a 9/11/20 11:00 AM	4.45	146	6.59	27	1.04	0.0010		
	a 9/11/20 11:10 AM		140	6.77	DY.	1.15	0.08004		-
	a 9/11/20 11:20 AM	4.45	145	6.70	21	1.18	0.0011		
	 w11/20 11:30 AM 	6.45	146		IN	1.26	0.0015		
				6.23					
	a 9/11/20 11:40 AM	4.45	145	6.93	8	1.44	0.0054		
	a W11/20 11:50 AM	4.45	146	6.51	54	1.35	0.00128		
	a 9/11/20 12:00 PM	4.45	146	6.70	21	1.47	0.0011		
	a 9/11/20 12:10 PM	4.45	140	6.69	21	1.49	0.00111		
	a 9/11/20 12:20 PM	4,45	146	6.62	25	1.64	0.0009	Pb*	
28	a 9/10/20 12:30 PM	4.45	195	6.69	22	1.71	0.0011		
29	a 9/12/20 10:00 AM	4.45	145	6.94	7	3.46	0.0033		
COLUMN D	a 9/12/20 10:10 AM	8.45	195	6.90	16	2.44	0.0013		
	w12/20 10:20 AM	4.45	146	6.72	19	2.52	0.0013		
	a 9/12/20 10:10 AM	6.45	105	6.68	22	2.71	0.0012		
	 w12/20 10:40 AM 	4.45		6.70	21	2.69	CUCHOR .	Pb*	
			140						
	a 9/12/20 10:50 AM	4.45	145	6,70	21	2.80	0.0008	Pb*	
	a 9/12/20 11:00 AM	4.45	140	6.67	22	2.86	0.0012		
	a 9/13/20 10:00 AM	4.45	145	7.05	2	4.36	0.0026		
37	a 9/15/20 10:10 AM	6.45	146	6.52	14	3.27	0.0045		
38	a 9/13/20 10:20 AM	4.45	145	6.74	19	3.53	0.0008	Pb*	
39	a 9/15/20 10:30 AM	6.45	140	6.71	210	3,73	0.180077	P5*	
40	a 9/13/20 10:40 AM	4.45	145	6.72	20	3.78	0.0008	Pb+	
	a 9/15/20 10:50 AM	4.45	146	6,72	20	3.37	0.0807	P54	
	a 9/13/20 11:00 AM	4.45	145	6.74	19	3.83	0.0009	Pb*	
	a 9/15/20 11:10 AM	0.45	140	6.75	18	1.68	D.CHOR.	154	
00.01	a 9/13/20 11:20 AM	4.45	145	6.76	20	3.64	0.0013	19.5	
	a 9/13/20 11:30 AM	1.45	146	6.59	27	3.66	0.0008	P34	
								Par.	
	 9/17/20 10:00 AM 	4.48	14?	6.75	18	6.12	0.0036		
	 9/17/20 10:10 AM 	4.50	149	6.73	16	4.80	0.0016		
	a 9/17/20 10:20 AM	4.50	149	6.73	19	4.11	0.0009	Ph+	
	a 9/17/20 10:30 AM	4.50	149	6.34	18	4.25	0.0009	Pb*	
50	a 9/17/20 10:40 AM	4.50	149	6.81	15	4.34	0.0009	Ph*	
51 1	a 9/17/20 1:00 PM	9.45	-129	7.39	+17	4.51	0.0002		Ca(OH)2 solution added
52	a 9/17/20 1:10 PM	9.45	-129	7.42	-19	4.44	0.0011		1997/2012/1016/1019/2019/201
10000	a 9/17/20 1:20 PM	9.45	-129	7.36	-16	4.21	0.0012		
22112		9.45	-129	7.26	-16	4.02	0.0010		
								1954	
	 a W17/20 1:40 PM b W17/20 1:40 PM 	9.45	-129	7.24	-9	3.98	0.0010	P.54	
	 9/17/20 1:50 PM 	9,45	-129	7.18	-6	3.87	0.0011		
	a 9/17/20/2500 PM	9.45	-129	7.83	-3	3.39	D.CKOOD		
	a 9/17/20 2:10 PM	9.45	-129	7.10	-1	3,47	0.0009	Pb*	
	a 9/17/20 2:20 PM	9.45	-129	7.09	-1	3,49	0.00079	hPa	
60 1	 a 9/17/20 2:30 PM 	9.45	-129	6.99	5	3.36	0.0008	Pb*	
61 6	a 9/18/20 10:00 AM	10.05	-164	7.82	-41	5.09	0.0034		
	a 9/18/20 10:10 AM	10.05	-164	5,52	-25	3.69	0.0010		
	a 9/16/20 10:20 AM	10.05	-164	7,40	-18	3.77	0.0009	Ph*	
100000	a 9/18/20 10:30 AM	10.05	-164	1.36	-16	3.39	0.0000	Pb*	
	a 9/18/20 10:40 AM	10.05	-164	7.35	-15	3.75	0.0008	Pb*	
Sec. 1	 w18/20 10:50 AM 	10.05	-104	3.30	-12	3.65	0.0007	Pb*	
	a 9/18/20 11:00 AM	10.05	-164	7.29	-12	3.39	0.0006	Pb*	
	a 9/18/20 11:10 AM	00.05	-164	3:23	-11	3.38	0.0006	Pb*	
	a 9/18/20 11:20 AM	10.05	-164	7.27	-11	3.21	0.0005	Pb*	
	a 9/18/20 11:50 AM		-104	3.25	-10	3.14	481000.0	Phy	
71	a 9/19/20 10:00 AM	10.99	-214	7.78	-39	4.90	0.0014		
	a 9/19/20 10:10 AM		-214	7,52	-25	3.83	DICKNOR	1.94	
	a 9/19/20 10:20 AM		-214	7.34	-15	3.65	0,0010	Pb+	
	a 9/19/20 10:20 AM		-214	7.51	-28	3.60	0.0007	Pb*	
	a 9/19/20 10:40 AM		-214	7.44	-38	3.55	0.0007	Ph.	
75	- I married an are	11.55	-245	7.35	-15	3.51	0.0008	Pb*	
75 76	 9/19/20 10:50 AM 								
75 76 77	a 9/19/20 11:00 AM	11.55	-265	7.31	-13	3.42	8000.0	1.94	
75 1 76 1 77 1 78 1		11.55	-245 -245 -245	7,31 7,22 9,40	-13 -8 -148	3.42 3.33 3.42	0.0009	h2. h2.	0.15 g Ca(OH2) iddee directly to 0.15 g Ca(OH2) addee directly to

Table 1. Results for experiment A (calcium hydroxide addition). 'Po*' indicates values are qualitative.

angak		Dute/Tune		Sandated rate OKP (mv)				Pb (mg/L)	Estimate	Noks
1	2	9/20/30 10:00 AM	4.49	144	6.93	8	0.0177	0.0303		India soft packed and simulated ra
2	۰.	9/20/20 11:10 AM	4.49	144	6.96	0	040010	0.0100		
3	2	9/20/20 10:20 AM	4,49	144	6.89	10	0.0061	0.0084		
4	ъ	9/20/20 10:30 AM	4.49	144	6.58	10	0.0046	0.0147		
5	2	9/20/20 10:40 AM	4.49	144	6.85	12	9:0039	0,0203		
0	.8	9/20/20 11:50 AM	4.49	144	6.80	15	0.0032	0.0035		
7		WA 00:11 00:00 AM	4.49	144	6.85	12	0.0036	0.0025		
8	÷.	9/20/20 11:10 AM	4.49	144	6.81	15	0.0029	0.0067		
4	ъ.	9/20/20 11:20 AM	4.49	144	0.67	82	0.10180	0.0018		
10	3	9/20/20 11:30 AM	4.49	144	6.83	13	0.0031	0.0022	-	
11		9/20/20 12:30 AM	4.49	144	6.87	11.	0.0224	0.0112		spiker with Ph/Sb powerer
12	-b-	9/20/20 12:40 PM	4.49	144	6.85	12	0.0805	0.0024		
11		9/21/20 10:00 AM	4.60	137	6.74	18	0.784	0.0135		
14		9/21/20 10:10 AM	4.60	137	6.79	15	0.559	0.0031		
15		9/21/20 11:30 AM	4.60	137	6.87	14	0.498	0.0063		
16		9/21/20 10:30 AM	4.60	197	6.85	12	0.536	0.0042		
17		9/21/20 10:00 AM	4.60	137	6.94	7	0.687	0.0025		
18		9/21/20 10:50 AM	4.60	137	6.90	10	0.206	0.0107		
19		92120 1100 AM	4.60	117	6.90	9	0.966	0.0016		
20	8	9/21/20 11:10 AM	4.60	197	6.85	12	0.891	0.0018		
21		9/21/20 11:20 AM	4.60	137	6.93	8	0.977	0.0012		
22		9/21/20 11:50 AM	4.60	195	6.63	U.	0.940	0.0115		
23	\$	9/21/20 11:40 AM	4.60	137	6.86	12	1.15	0.0013		
22	5	9/21/20 11:90 AM	4.60	137	0,00	14	1.35	0.0013		
25	÷.	9/21/20 12:00 PM	4.60	137	6.86	12	1.32	0.0059		
22						12	1.32	0.0029		
	2	\$621/20 12:10 PM	4.60	137	6.58					
27	2	9/21/20 12:20 PM	4.60	137	6.85	12	1.56	0.0013		
28	۰.	9/21/20 12:30 PM	4.60	117	6.78	16	1.66	0.0018		
29	3	9/22/20 10:00 AM	4.60	137	7.14	-4	3.11	0.0057		
30	*	9/22/20 11:10 AM	4.60	137	6.94	8	2.07	0.0019		
11		9/22/20 10:30 AM	4.60	137	6.86	12	2.65	2100.0		
32	÷.	9/22/20 18:30 AM	4.60	197	6.54	13	2.84	0.0014		
33		9/22/20 10:40 AM	4.60	137	6.58	11	2.95	0.0022		
34	3	9/22/20 11:50 AM	4.60	197	6.82	14	3.04	0.0013		
32		9/22/20 11:00 AM	4.60	137	6,79	15	3.15	0.0024		
36	ъ.	9/23/20 (19:00 AM	4.60	197	7.21	-7	4.53	0.0052		
37		9/33/20 10:10 AM	4.60	137	6.90	9	3.83	0.0038		
38		W23/20 10:20 AM	4.60	197	6,83	11	3.51	0.0013		
39		9/23/20 11:30 AM	4.60	137	6.82	14	3.62	0.0014		
40		9/23/20 10:40 AM	4.60	197	6.81	15	3.83	0.0010	Pb*	
41		9/23/20 11:50 AM	4.60	137	6.82	14	3.96	0.0034		
42		W23/20 11:00 AM	4.60	197	6.82	14	3.97	0.0010		
43		92320 11:10 AM	4.60	137	6.85	12	4.07	0.0091		
44		9/23/20 11:20 AM	4.60	137	6.92	g	3.75	0.0010		
45		9/23/20 11:30 AM	4.60	137	6.90	10	3.59	0.0011		
-46	5	92720 UH0 AM	4.47	144	6.51	11	3.75	0.0015		
43	5	9/27/20 18:10 AM	4,47	144	6.74	19	3,40	0.0613		
48	5	9/27/20 10:20 AM	4.47	144	6.51	15	2.85	0.0010	264	
49	\$	9/27/20 11:30 AM	4.47	144	6.81	15	2.81	0.0009	Pb*	
40			4.47			15		0.0013	PD*	
		9/27/20 10:40 AM		144	6,74		2.87			10 1 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
51	ъ.	9/27/20 1:00 PM	9.39	-126	7,49	-23	319	0.0014		Cit9(PO4)2 solution added
52	۶.	9/27/20 1:10 PM	9.39	-126	7.23	.9	3.05	0.0011		
55	۰.	9/27/20 1:20 PM	9.39	-126	3.23	-41	3.01	0.0011		
54	*	9/27/20 1:30 PM	9.39	-126	3.31	-13	3.06	0.0010		
55		9/27/20 1:40 PM	9,39	-126	7.32	-14	3.05	0.0011		
36	ъ.	W27/20 1:50 PM	9.39	-126	7.32	-14	3.112	0.0011		
57	3	9/27/20 2:00 PM	9.39	-126	7.29	+12	3.00	0.0011		
38		9/27/20 2:10 PM	9.39	-126	7,36	+16	2.90	0.0013		
59	3	9/27/20 2:20 PM	9.39	-126	7.29	-12	2.89	0.0013		
60		9/27/20 2:90 PM	91.9	-126	7.32	-13	2.82	0.0012		
61		9/28/20 10:00 AM	10.00	-159	7.46	-21	6.03	0.0054		
62		9/38/30 1E:00 AM	10.00	-199	7.19	+\$7	4.07	0.0035		
63	ъ.	9/28/20 11:20 AM	10.00	-159	7.38	-17	3.77	0.0036		
64		908/20 10:90 AM	10.00	-159	7.38	+17	3.61	0.0034		
65	3	9/28/20 10:40 AM	10.00	-159	7,43	-19	3.57	0.0033		
66		9/38/30 10:90 AM	10.00	-159	7.43	-19	3.60	0.0031		
67	5	9/28/20 11:00 AM	10.00	-159	5,44	-20	3.48	0.0031		
48	8	9/26/20 11:10 AM	10.00	-179	7.42	-19	3.03	0.0032		
AD.	÷	9/28/20 11:20 AM	10.00	-159	3.42	-19	3.32	0.0027		
70	÷	9/28/20 11:30 AM	10.00	-159	7.50	-19	3.32	0.0027		
71	2	9/29/20 10:00 AM	10.97	-214	3,60	-29	81/7	0.0099		
72	÷.	9/29/20 10:10 AM	10.97	-214	7.48	-22	4.62	0.0068		
73		9/29/20 11:20 AM	10.97	-214	7.50	-15	4.20	0.0009		
74	۰.	9/29/20 10:30 AM	10.97	-214	7,49	-23	4.23	0.0051		
75		9/29/20 10:40 AM	10.97	-214	7.62	-30	4.05	0.0046		
76	3	9/29/20 10:50 AM	11.55	-246	7.64	(23	4.12	0.0065		
77	3	9/29/20 11:00 AM	11.55	-246	7.68	-33	4.39	0.0137		
78		9/29/20 11:10 AM	11.55	-346	7.94	-47	4.39	0.0175		
79		9(29)20 12:10 PM	12.32	-280	9,42	-129	4.14	0.104		0.01 mL 5 M NeOH edited
		9/29/20 1:10 PM	12.32	-790	9.40	-151	3.97	0.130		

Table 2. Results for experiment B (phosphate addition). 'Pb*' indicates values are qualitative.

4 Conclusions

Overall, the experiment showed that Sb becomes significantly more mobilized than Pb in the systems studied. The phosphate addition caused higher concentrations of Sb to become mobilized than the calcium hydroxide addition. Lead concentrations remained relatively low throughout the entirety of both experiments, indicating Pb has relatively low mobility in these systems, unless pH spikes to above 9.5. Previous efforts concluded that the dominant Sb species in the system is likely Sb(V) and therefore has increased mobility at pHs above 7-8, in general. We conclude that Sb(V) is also the dominant Sb species in the current experiments. Lead, on the other hand, tends to become mobilized in low pH systems (<4-5) and high pH systems (>10). The results from this effort show that amendment additions to the Joint Base Cape Cod berms for sequestering metals, like lime and phosphate, caused an increase in Sb concentrations. There was not the same increase in mobility for Pb as seen with Sb after the additions. Comparing the two amendments, the phosphate addition mobilized Sb to a greater extent than the lime addition, indicating there may be additional controls on Sb mobility than just pH, such as a more favorable complex formed between phosphate and Sb than the calcium hydroxide addition.

5 Recommendations

Current and previous work show that the aqueous Sb in the systems at Camp Edwards is fully oxidized $Sb(V)_{aq}$ and becomes mobilized to a greater extent than Pb in shooting range systems when calcium hydroxide or calcium phosphate are applied. Concentrations of Sb will likely decrease in aqueous systems (groundwater, soil pore water, etc.) when the source of Sb has been depleted. Further work on these samples would include (1) solid phase characterization of total Pb and Sb concentrations in the soils after the calcium hydroxide and calcium phosphate additions, and (2) synchrotron characterization as next logical steps. Each step is outlined below in further detail.

- Solid phase characterization of the total Pb and Sb concentrations in the test soils collected after the leaching experiment. From this, we can determine Pb and Sb partition coefficients.
- (2) Speciation characterization of the test soils collected after the leaching experiment. Characterizing the solid phase Sb product that was produced when either calcium phosphate or calcium hydroxide were added to the test soils would yield insight into stability of the product over time and potential pathways for weathering/degradation. Currently, we know the addition of these two amendments mobilized Sb to a greater extent than Pb and it is likely linked to the rise in pH and formation of secondary mineral phases or complexes in soil and soil solution.

These two recommendations are further steps to understand the detailed transformation pathways of Sb (particularly) in the Camp Edwards soil system. This type of detailed work may not be needed for regulatory purposes of managing the site, but may yield insight into weathering rates and assist with any future remediation plans.
Soldier Validation Lane Annual Report

Camp Edwards --- Massachusetts Army National Guard

Soldier Validation Lane Annual Monitoring Report

February, 2022

(NHESP Tracking No.: 08-24210)

Soldier Validation Lane Use

No site composition changes occurred in FY21.

SVL Assessments after 2021 Training Season

All sites with containers were visited in February 2022 to evaluate training impacts during the 2021 training season. The assessment methodology matched the assessment performed in the Baseline Condition Assessment Report and FYs 12-19, to provide a means of comparison. The containers replicate buildings, and prop materials are utilized to create a more realistic setting, such as barrels, bicycles, grills, tires, wall sections, etc. No major changes were made to any sites during 2021 and management activity was limited to Roads and Grounds personnel mowing around existing infrastructure

Conclusion

All regulatory conditions were followed during use of the SVLs and BPs for training. Most erosion and rutting impacts have remained static on the lanes as expected with regular levels of vehicle use and regular stormwater runoff on dirt roads. MAARNG will continue to strive to minimize environmental impacts from these lanes by following the established guidelines.

APPENDIX D ENVIRONMENTAL LAWS AND REGULATIONS

	ENVIRONMENTAL LAWS AND REGULATIONS		
	GOVERNING MAARNG ACTIVITI	· · · · · · · · · · · · · · · · · · ·	
Reserve EPS	Federal Law / Regulation	State Law / Regulation	DoD Regulation
Groundwater Resources	Clean Water Act Safe Drinking Water Act	Drinking Water Quality Standards (310 CMR 22.00) State Wellhead Protection (310 CMR 22.21) Water Management Act (310 CMR 36.00)	AR 200-1 AR 200-2 Camp Edwards Regulation (CER) 385-63
Wetlands and Surface Water	Clean Water Act Coastal Zone Management Act Floodplains Management (EO 11988) Protection of Wetlands (EO 11990) Rivers and Harbors Act of 1899 Sikes Act Wetlands Management (EO 11990)	Massachusetts Wetlands Protection Act (M.G.L. c. 131, s40; 310 CMR 100.00)	AR 200-2 CER 385-63
Rare Species	Federal Endangered Species Act Sikes Act	Massachusetts Endangered Species Act (M.G.L. c. 131A, 321 CMR 10.00)	AR 200-1 AR 200-2 AR 200-3 CER 385-63
Soil Conservation	Sikes Act Soils and Water Conservation Act Use of Off-Road Vehicles on Public Lands (EO 11989)		AR 200-1 AR 200-2 AR 200-3 CER 385-63
Vegetation Management	American Indian Religious Freedom Act Environmental Justice (EO 12898) Exotic Organisms (EO 11987) Sikes Act		AR 200-1 AR 200-2 AR 200-3 CER 385-63
Habitat Management	Sikes Act	Massachusetts Endangered Species Act (M.G.L. c. 131A, 321 CMR 10.00)	AR 200-1 AR 200-2 AR 200-3 CER 385-63
Wildlife Management	Fish and Wildlife Conservation Act Migratory Bird Conservation Act Migratory Bird Treaty Act Sikes Act		AR 200-1 AR 200-2 AR 200-3 CER 385-63
Air Quality	Clean Air Act	State Air Quality Regulations (310 CMR 4.00)	AR 200-1 AR 200-2 CER 385-63

ENVIRONMENTAL LAWS AND REGULATIONS

		WS AND REGULATIONS IES IN THE TRAINING AREA/RESE	ER∨E
Reserve EPS	Federal Law / Regulation	State Law / Regulation	DoD Regulation
Noise Management	Federal Interagency Committee Land Noise Control Act Occupational Safety & Health Act Use Planning Standards on Urban Noise, Guidelines for Considering Noise in Land Planning and Control (June 1990)		AR 200-1 AR 200-2
Pest Management	Animal Damage Control Act Federal Insecticide, Fungicide, and Rodenticide Act Noxious Weed Act Resource Conservation and Recovery Act Sikes Act Toxic Substances Control Act		DoD 4150.7 AR 200-1 AR 200-2 AR 200-5 AR 420-47
Fire Management	Clean Air Act Sikes Act The National Fire Code Uniform Fire Code	State Air Quality Regulations (310 CMR 4.00)	AR 200-1 AR 200-2 AR 200-3 AR 420-90 CER 385-63
Storm Water Management	Clean Water Act NPDES discharge permitting and limitations	Massachusetts Wetlands Protection Act (M.G.L. c. 131 s.40, 310 CMR 10.00.)	AR 200-1 AR 200-2
Wastewater	Clean Water Act	Title V (310 CMR 15.00)	AR 200-1 CER 385-63
Solid Waste	Resource Conservation and Recovery Act Toxic Substances Control Act	State Solid Waste Handling and Disposal (310 CMR 16.00/19.00)	AR 200-1 AR 200-2 AR 420-47 CER 385-63
Hazardous Materials	Asbestos Hazard Emergency Response (40 CFR 763) Federal Insecticide, Fungicide and Rodenticide Act Hazard Communication Standard Program (29 CFR 1910.1200) Lead Contamination Control Act OSHA (29 CFR 1910, 29 USC 91- 596) Poison Prevention Packaging Act Toxic Substances Control Act	Hazardous Substances Labeling Law (105 CMR 650.00)	AR 200-1 AR 200-2 CER 385-63

		ies in the training area/rese	RVE
Reserve EPS	Federal Law / Regulation	State Law / Regulation	DoD Regulation
Hazardous	Clean Air Act	Department of Transportation	AR 200-1
Waste	Clean Water Act	regulations regarding shipping	AR 200-2
	Emergency Preparedness and	and transportation, Hazardous	AR 420-47
	Community Right-To-Know Act	Waste Management and	CER 385-63
	Federal Facilities Compliance Act	Transportation (310 CMR	
	Hazardous Waste Operations and	30.000)	
	Emergency Response	Management of Medical Waste	
	Medical Waste Tracking	(105 CMR 480)	
	National Fire Code	Pesticide use (333 CMR 1.00 –	
	Oil Pollution Act	12.00)	
	Pollution Prevention Act	Solid waste facilities	
	Resource Conservation and	management (310 CMR	
	Recovery Act	16.00/19.00)	
	The National Contingency Plan	State right-to-know requirements	
	Underground Storage Tank	(105 CMR 670.00)	
	Program (RCRA, Title I)	Title V (310 CMR 15.00)	
	Uniform Building and Fire Codes	Toxic use reduction (310 CMR	
	Comprehensive Environmental	5.00)	
	Response, Compensation, and	Underground storage tanks	
	Liability Act	standards	
		(527 CMR 4.00 and 9.0)	
		Massachusetts Contingency Plan	
		(310 CMR 40.00)	
Vehicle	Use of Off-Road Vehicles on Public		AR 200-2
	Lands (EO 11989)		CER 385-63
	Use of Off-Road Vehicles on Public		AR 200-1
General Use	Lands (EO 11989)		AR 200-2
And Access			CER 385-63

ENVIRONMENTAL LAWS AND REGULATIONS

ENVIRONMENTAL LAWS AND REGULATIONS GOVERNING MAARNG ACTIVITIES IN THE TRAINING AREA/RESERVE

	GOVERNING MAARING ACT	$\mathbf{M} = \mathbf{M} = $	JLK VL
Reserve EPS	Federal Law / Regulation	State Law / Regulation	DoD Regulation
Cultural	Antiquities Act of 1906	Massachusetts General Laws,	AR 200-2
Resources	Archeological and Historic	Chapter 9, sections 26-27C as	AR 200-4
	Preservation Act of 1974	amended by Chapter 254 of the	DA PAM 200-4
(This EPS	Archeological Resources	Acts of 1988 (950 CMR 71.00)	Office of the Secretary
refers to	Protection Act of 1979		of Defense, Annotated
archeological	Consultation and Coordination	Massachusetts Environmental	Policy Document for the
resources only;	with Indian Tribal Governments	Policy Act (MEPA)	American Indian and
the list of	(Executive Order 13175)	Massachusetts General Laws	Alaska Native Policy
regulations	Curation of Federally	Chapter 30, sections 61 through	(27 October 1999)
cited here has	Owned/Administered	62H, inclusive (301 CMR 11.00)	
therefore	Archeological Collections		
been	Executive Memorandum of April	Massachusetts General Laws,	
restricted to	19, 1994 – Government-to-	Chapter 38, section 6B: Chapter	
those that	Government Relations with	9, sections 26A and 27C; Chapter	
pertain to	American Tribal Governments	7, section 38A; Chapter 114,	
protection of	National Environmental Policy	section 17; as amended by	
archeological	Act of 1966, as amended	Chapter 659 of the Acts of 1983	
resources)	Native American Graves	and Chapter 386 of the Acts of	
	Protection and Repatriation Act	1989	
	of 1990		

DOD Regulations include all regulations and directives of the Department of Defense, Department of the Army, and National Guard Bureau.

AR = Army Regulation

CER – Camp Edwards Regulation

CFR – Code of Federal Regulations

CMR - Code of Massachusetts Regulations

DA PAM = Department of Army Pamphlet

EO – Executive Order

M.G.L – Massachusetts General Laws

RCRA – Resource Conservation and Recovery Act

APPENDIX E WATER SUPPLY INFORMATION

2021 Long Term Monitoring Sentry Well Sampling Results Upper Cape Regional Water Supply Cooperative

1.1
Watermark
175 Cabot Street • Lowell, MA 01854 Office 978.452.9696 Fax 978.453.9988

TO: MA Department of Environmental Protection

Southeast Regional Office	
20 Riverside Drive	
Lakeville, MA 02347	

DATE:	06	06/29/2021 JOB NO: 17006-00		
ATTENT	ION:	Mr. Rich	ard Rondeau	
RE:	Ser	ntry Well S	ampling Resu	ts 2021 Sampling Round
Upper Ca	pe Re	gional Wat	er Supply (UC	RWS)
Long-Ter	m Me	nitoring, Se	entry Well Sar	npling Results

WE ARE SENDING YOU:

· · · · · · · · · · · · · · · · · · ·	Attached	Under separate cover via	\Box FedEx \Box UPS	TT USPS	the following items:
Shop Drawings	Prints	Plans	Samples	<u> </u>	Reports

sawings.	Prints	Plans	Samples	
-				

Copy of Letter Change Order No.

NO.	ITEM	QUANTITY	DESCRIPTION	
1	Hard Copy	1	UCRWS Long-Term Monitoring Sentry Well Sampling Results – 2021 Sampling Round	
9 1X				

THESE ARE TRANSMITTED as checked below:

For approval	Approved as submitted	Rasubmit	Copies for approval
✓ For your use	Approved as noted	Submit	Copies for distribution
As requested	Returned for corrections	Return	Corrected prints
For review and comment	For bids due		Prints returned after loan to Watermark

REMARKS:

Hi Richard,

deep screens.	 If you have any questions or require additional information, please give me a call at 978-452-9696.
	Thank you,
	Joe Spangenberger
сору то:	Dan Mahoney – UCRWS, wienes File 17006-00/WLC3770 If anelosares are not as noted, landly notify as where.

Form No. 032 (June 2009)

Environmental Infrastructure Buildings & Facilities

June 25, 2021

Mr. Dan Mahoney, Chair Upper Cape Regional Water Supply (UCRWS) Cooperative P.O. Box 373 Mashpee, MA 02649-0373

Subject: Results of 2021 Sampling Round Long-Term Monitoring Well Sampling Services UCRWS Cooperative – Long-Term Monitoring Plan

Dear Mr. Mahoney:

In accordance with our proposal dated July 29, 2015, and as authorized by the UCRWS on April 1, 2021, we are pleased to submit the results of the 2021 Sampling Round that was performed by Watermark Environmental, Inc. (Watermark) between May 18 and 20, 2021. During the 2021 Sampling Round, seven (7) shallow well screens (C-1S through C-7S) and seven (7) deep well screens (C-1D through C-7D) were sampled in accordance with the UCRWS Long-Term Monitoring (LTM) Plan, as amended on October 22, 2007. The groundwater sample analyses were performed by Envirotech Laboratories, Inc. of Sandwich, Massachusetts (Envirotech), Eurofins TestAmerica Laboratories, Inc. of Savannah, Georgia and its subsidiaries (Eurofins TestAmerica), and their subcontractor Alpha Analytical of Westborough, Massachusetts.

On May 25, 2021, Eurofins TestAmerica's subcontractor, Chemserve, Inc., who is the only Massachusetts Department of Environmental Protection (MassDEP)-approved lab that can analyze for perchlorate using EPA Method 314.0, informed Watermark they were unable to meet the detection limit of less than 2.0 micrograms per liter (µg/L). Typically this method has a detection limit of 0.30 µg/L. TestAmerica therefore suggested analyzing the perchlorate samples by EPA Method 332.0 to achieve a lower detection limit. In addition, fourteen groundwater samples (C-1S, C-1D, C-2S, C-2D, C3-S, C3-D, C4-S, C4-D, C5-S, C5-D, C6-S, C6-D, C7-S, and C7-D) submitted for explosives analysis, were received by the lab above 6.0 degrees Celsius (°C) due to a delay by the shipping company. Since the time that samples were above 6°C was limited, the potential for biological degradation was believed to be low by the laboratory.

Nevertheless, on May 26, 2021, Ms. Maura Callahan (Callahan Consulting, Inc.), spoke with Mr. James McLaughlin, Drinking Water Program Chief for the MassDEP Southeast Regional Office (SERO) regarding the possibility of using a new perchlorate method and if the results for the samples received above 6.0 °C would be accepted by MassDEP. Mr. McLaughlin verbally approved the use of EPA Method 332.0 and the data associated with the analysis of the samples that were received above 6.0 °C.

We have completed a review of the Sample Data Summary and Extended Data Packages provided by Eurofins TestAmerica and by Envirotech, and have confirmed that the quality control objectives established for field sampling and laboratory analyses efforts have been effectively met (with the qualifiers mentioned above). The laboratory results of the sampling effort have been tabulated in the attached 2021 Sampling Results Tables (Attachment A). Results for all volatile organic compounds (VOCs), 1,2-dibromoethane (EDB), and explosives compounds were non-detect, with the exception of chloroform and perchlorate.

175 Cabot Street + Lowell, MA 01854 + Office 978.452.9696 + Fax 978.453.9988 + www.watermarkenv.com

Mr. Dan Mahoney, Chair Results of 2021 Sampling Round June 25, 2021 Page 2 of 2

Chloroform was detected in all but one monitoring well (C-6S) and perchlorate was detected in monitoring wells C-2S, C-4D, and C-6S. Chloroform results are consistent with historical data. Since EPA Method 332.0 has a lower detection limit, perchlorate was detected in two wells (C-2S and C-6S) at concentrations below 0.30 µg/L. Perchlorate was detected in one well (C-4D) at a concentration of 0.304 µg/L. The chloroform and perchlorate detections were all below the Massachusetts Drinking Water Standards. Water quality results were below their respective standards.

Once again, we appreciate this opportunity to be of service to the UCRWS, and we look forward to working with you in the future. If you have any questions regarding this submittal, please do not hesitate to contact me at (978) 452-9696.

Sincerely, WATERMARK

Olaf Westphalen, PG, LSP Project Manager

Attachments:

 Attachment A:
 2021 Sampling Results Tables

 Attachment B:
 Chain of Custody Forms, Low Flow Data – Field Results, 2021 Sampling Event

cc:

J. Spangenberger (Watermark) File 17006-00/WLC3770

Watermark

ATTACHMENT A 2021 Sampling Results Tables Watermark

Table 1-1 Physical-Chemical Parameters Shallon and Deep Sevens at Sentry Wells 2021 Sampling Results, UCRWS, Massechneetts

Sample ID Wate Quality Laboratory Standard Roperting	Water Quality Standard	Roperting	CIS	93	Sig	80		83	3	9	8 C	3	3	C B	C.1S	85
Sample Dute	Level ³¹	Limit	1202-81/50	06/20/2021	0202/61/20	1202/51/50	06/18/23/21	0520/2021	05/19/2021	064392031	1202/02/20	05/20/2021	05/13/2021	05/19/2021	05/19/2021	2020130202
Physical-Chumical																
pH Method SM 4500 H-B	ń S . S 92	NN.	8.9	67,9	123	645	649	6.65	900	28.9	8	6 46	9 T Q	6.82	158	6.M
Alkuluity - Total, an CACO5 (mg.L.) Methed SM: 2520 B	ЯВ	2.5	6.4	зс	8.8	10	12	11	5.8	П	П	68	20	9.0	6.8	п
Turbicity (NTU) Method SM 2130 B	Ħ	Ŭ1	971	ш.)-	5	1.9	15	90	€. P	015	645	<t,ñ< td=""><td>610</td><td>4°12</td><td>en.a</td><td>qÞ</td></t,ñ<>	610	4°12	en.a	qÞ
Speafic Conducting (unhosen (§ 25 °C) Method FOA 120 1	MH	10.0	25	G	N	65	ą	8 8	4	3	Ģ	4	89	4	æ	54

¹⁰ Water Costry Standard Levels are the Massidation's Maximum Contarriants Level (XMC), 2020 tables objection role: ¹⁰ Water Under Standard Lervis are from the Sewardary Maccuran Contranautr Lervis (SOFCs, 2020).

Sanches were and/zeed by Environeth Infocatedus Inc. of Sandwich, Massachusetts.

Not Istablished	Presiment Technique
- TR	10

NJU – Nepadometao Tartiday Uuri puttosian – Miorembos per Centimeter

•C = degrees Century NA = Not Applicable

c = Loss Than
 mp/L = Mubgrans per Liter

Prepared By: 30 Checked By: MM

Mrs 2021 96LC2V10

VIG6-01Lang-Tarri Mandar ng Wali Sangang Samaan Lipta Capa Sagiand Wala Suppy Cosponition Madapat. MA

Pagel of1

Table 1-2 Volatile Organic Compounds EPA Method 524.2 (mg/L) Shallow and Deep Screens at Sentry Wells 2021 Sampling Results, UCRWS, Massachusetts

Watermark

Samuple ID	Water Quality Standard Level ⁽¹⁾	Loboratory Reporting Limit*	C-15	C-1D	C-25	C-2D	C-3S	C-3D	C-45
Sample Date	(ing/L)	(ing/L)	05/18/2021	05/20/2021	05/19/2021	05/19/2021	05/18/2021	05/20/2021	05/19/202
VOCS		-			a	-	6		161
Irans-1,3-Dichloropropere	0.0004(20/4)	0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005
Thy berzene	0.7	0.0005	< 0.0005	<0.0005	< 0.0005	<0.0005	< 0.0005	< 0.0005	< 0.0005
Drichlerefluoremethane	NE	0.0005	< 0.0005	<0.0005	< 0.0005	<0.0005	< 0.0005	< 0.0005	< 0.0005
Icarchiarobutadiene	NE	0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005
seprepylbenzeae	NE	0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005
-Isepropyltolaene	NE	0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005
sfethy lene chloride (Dichloromethane)	0.005	0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005
Vaphthalene	0.140 ⁽³⁾	0.001	<0,001	<0.001	< 0.001	<0.001	<0.001	<0.001	<0.001
Bertzene	0.005	α.0905	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005
-PropyIbenzene	NE	CORB	< 0.0005	< 0.0005	<100005	<0.0005	< 0.0008	<0.0008	< 0.0005
styrene	0.1	0.0005	< 0.0005	< 0.0005	< 0.0008	< 0.0005	< 0.0005	< 0.0005	< 0.0008
1,1,2-Tetrachloreethane	NE	0.0005	< 0.0005	<0.0005	< 0.0005	<0.0005	< 0.0005	< 0.0005	< 0.0005
1,2,2-Tetrachloroethane	NE	0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005
Fernehlaeoethy kene	0.065	0.0005	< 0.0005	< 0.0005	< 0.0005	<0.0005	< 0.0005	< 0.0005	< 0.0005
Foluene	1	0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005
.2,3-Trichlorobenzene	NE	0.0005	< 0.0005	< 0.0005	< 0.0008	< 0.0005	< 0.0005	< 0.0005	< 0.0005
.2.4-Trichlorohenzene	0.07	0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 8.0005	< 0.0005	< 0.0005
1.1-Drichloroethane	0.2	CLORES	< 0.0005	< 0.0005	< 0.0005	<0.00085	< 0.0005	< 0.0005	< 0.0005
.1.2-Trichloroethane Drichloroethene	0.005	0.0005	< 0.0005	< 0.0005	< 0.0005	<0.0005	< 0.0005	< 0.0005	< 0.0005
a result to entretere	NE	0.0005		<0.0005	< 0.0005	<0.0005	< 0.0005		< 0.0005
.2.3-Trichleropropane .2.4-Trimethylbenzene	NE	0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005
.3.5-Trimetry Ibenzene	NE	0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.00005	< 0.0005	< 0.0005	< 0.0005
vinyl chloride	0.002	0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005
-Xytenc	1000	0.0005	< 0.0005	<0.0005	< 0.0005	<0.0005	< 0.0005	< 0.0005	< 0.0005
n-Xylene & p-Xylene	10	0.0005	< 0.0005	<0.0003	< 0.0005	<0.0005	< 0.0005	< 0.0005	< 0.0005
respirate se pessynane Breanebenzene	NE	0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005
Romodichloromethane	NE	0.0005	< 0.0005	< 0.0905	< 0.0005	< 0.00005	< 0.0005	< 0.0005	< 0.0005
Sconneform	NE	0.0005	< 0.0005	<0.0003	< 0.0005	<0.0005	< 0.0008	< 0.0005	< 0.0005
Scontinethane	0.01021	0.001	=0.001	<0.001	=0.001	<0.001	=0.001	<0.001	=0.001
ddhyl tert-bulyl dher (MTBE)	0.070	0.0005	< 0.0008	<0.0005	< 0.0008	< 0.0005	< 0.0005	< 0.0005	< 0.0005
-Butylbenzene	NE	0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005
co-Bulylbenzeuc	NE	0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005
ert-Butylbenzene	NE	0.0905	< 0.0005	< 0.0005	< 0.0005	< 0.0905	< 0.0005	< 0.0005	< 0.0005
artion tetrachloride	0.005	0.0005	< 0.0008	<0.0008	< 11.0005	<0.0008	< 0.0008	<0.0008	< 0.0005
hlorobenzene	0.1	0.0005	< 0.0005	<0.0005	< 0.0005	<0.0005	< 0.0005	< 0.0005	< 0.0005
Dibromocluloramethane	NE	0.0005	< 0.0005	<0.0005	< 0.0005	<0.0005	< 0.0005	< 0.0005	< 0.0005
Chloreethanc	NE	0.001	<0.001	<0.001	<0.001	<0.001	< 0.001	<0.001	<0.001
hlorofam	0.0762	0,0005	0,00094	0.0017	4.0012	0.0019	0.0018	0.0011	0.00076
Thieremethane	NE	0.0005	< 0.0005	< 0.0005	< 0.0005	<0.0005	< 0.0005	< 0.0005	< 0.0005
-Chlerateluene (a-Chlerataluene)	NE	0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005
-Chlorotoluene (p-Chlorotoluene)	NE	0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005
Dibromomethane	NE	0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 8.0005	< 0.0005	< 0.0005
.2-Dichlorobenzene (u-DCB)	0.6	0.0005	< 0.0005	<0.0008	< 0.0005	<0.0008	< 0.0005	< 0.0005	< 0.0005
.3-Dichlorobenzene (m-DCB)	NE	0.0005	< 0.0005	< 0.0005	< 0.0008	< 0.0005	< 11.0008	< 0.0005	< 0.0005
,4-Dichlorobenzene (p-DCB)	0.005	0.0005	< 0.0005	<0.0005	< 0.0005	<0.0005	< 0.0005	< 0.0005	< 0.0005
Dichlorodifluoromethane	1.12	0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005
.1-Dichloroethane	$0.070^{(2)}$	0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005
.2-Dichloroethane	0.005	0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0905	< 0.0005	< 0.0935	< 0.0005
,1-Dichloroethylene	0.007	0.0005	< 40.0005	<0.0005	< 0.0005	<0.0008	< 0.0005	< 0.0006	< 0.0005
is-1,2-Dichloraethylene	0.07	0.0005	< 0.0005	<0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005
Imns-1,2-Dichlaroethylene	0:1	0.0005	< 0.0005	<0.0005	< 0.0005	<0.0005	< 0.0005	<0.0005	< 0.0005
.2-Dichloropropane	0.005	0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005
3-Dichleroprepane	NE.	0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005
2-Dichloropropane	NE	0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005
.1-Dichloropropene	NE	0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005
is-1,3-Dichleroproyene	0.0004(3.(*)	0.0005	< 0.0008	<0.0005	< 0.0005	<0.0005	< 0.0005	< 0.0305	< 0.0005
-Butabone (MEK)	4(2)	0.01	= 0.01	<0.01	+0.01	<0.01	= 0.01	<0.01	=0.01
-Methyl-3-pentanene (MIBK)	0.35	0.01	<0.01	<0.01	<:0.04	<0.01	<0.01	<0.01	<0.01

.3.06-10 Long-Turn Identitioning Well Sampling Bernster Apper Cope, Inglie of Harry Supply Cooperative, Mathems, M.A. 7an 2021 W. C.(M

Table 1-2 Volatile Organic Compounds EPA Method 524.2 (mg/L) Shallow and Deep Screens at Sentry Wells 2021 Sampling Results, UCRWS, Massachusetts

Water Quality Laboratory Sample ID C-4D C-58 C-5D C-68 C-m C-78 C-7D Standard Reporting Level⁽¹⁾ Limit* (mg/L) (ing/L) Sample Dat 65/19/2021 05/20/2021 05/20/2021 05/19/2021 05/19/2021 05/19/2021 05/19/2021 Trans-1,3-Dichloropropere 0,0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 0.0004(20) < 0.0005 < 0.0005 <0.0005 <0.0005 0.0005 < 0.0005 <0.0005 < 0.0005 Trichlorofhoromethane N.F < 1111008 < 0.00005 < 0.0008 < 0.0005 < 11.0005 < 0.0005 < 0.0005 Hexachlorobutadiene NE 0.0003 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005< 0.0005 < 0.0005leeprepylbenzene 0.0005 < 0.0005 < 0.000S < 0.0005 : 0.0005 < 0.0005 < 0.0005 < 0.0005 NE < 0.0005 : 0.0005 p-Licoropyltoluene 0.0005 0.0005 < 0.0005 < 0.0005 0.00035 < 0.0005 Methylene chloride (Dichloromethane) < 0.0005 < 0.0005 0.005 0.0005 0.0005 0.0005 < 0.0005 0,0005 < 0.0005 0.001 <0.001 -00.001 <0.001 -0001 <0.001 <0.001 <0.001 0140 < 0.0005 0.005 0,0905 < 0.0005 : 0,0935 < 0.0005 : 0.0005 < 0.0005 : 0.0005 n-Propy Ibenzene NE 0.0003 < 11.110005 0.0008 < 10.0005 0.0008 < 0.0008 < 0.0008 < 0.0005 0.1 0.0005 < 0.0005 < 0.0005 < 8.0008 < 0.0005 < 0.0005 < 0.0005 < 0.0008 1,1,1,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane 0.0005 < 0.0005 <0.0005 < 0.0005 <0.0008 < 0.0005 < 0.0005 NE ≤ 0.0005 ME 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 Tetrachilar octhy leac 0.065 0.00025 < 6.0005<0.0005 < 0.0005 <0.0005 ≤ 0.0005 < 0.0005 ≤ 0.0005 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 1.2.3-Trichlorobenzone NE < 0.0008 < 0.0005 < 0.0005< 0.0005 ≤ 0.0005 < 0.0005 < 0.0005 0.0005 0.07 < 0.0005 < 0.0005 < 0.0005 1.2.4 Trichlorobenzene 0.0005 < 0.000S : 0,0005 < 8.0005 < 0.0005 1,1,1-Trichlomethane aoaas < 0.0005 < 0.0005 < 100005 < 0.0008 < 11.0005 < 0.0008 < 0.00051.1.2-Trichloroethane < 0.0005 <0.0005 <0.0005 < 0.0005 0.005 0.0005 < 0.0005 < 0.0005 < 0.0005 Trichloroethene <0.0005 <0.0005 0.005 0.0003 < 0.0005 < 0.0005 < 0.0005 <0.0008 < 0.0005 1,2,3-Trichleropropane 1,2,4-Trimethylbenzene NE 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005< 0.0005 < 0.0005 NT. 0.0005 < 0.0005 < 0.00005 < 0.0005 < 0.00005 < 0.0005 < 0.00005 < 0.0005 1.3.5-Trimethy Ibenzone NE 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 0.0020.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005<0.0005 10 0.0005 < 0.0005 <0.0003 < 0.0005 < 0.0005< 0.0005 < 0.0005m-Xylene & p-Xylene 10 0.0005 < 0.0005 <0.00015 < 0.0005 <0.0005 < 0.0005< 0.0005 < 0.0005NE 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 M Bronnodichloromethane 0.0005 < 0.0005 < 0.000S < 0.0005 < 0,000S < 8.0005 < 0.000S < 0.0005 < 0.0008 <0.0005 < 0.0005 < 0.0005 < 0.0008 < 0.0005 < 0.0005 NE 0.0005 0.010 0.001 :0.001 <0.001 =0.001 <0.001 :0.001 <0.001 =0.001Melhyl tert-bulyl ether (MTBE) 0.0005 < 0.0008 < 0.0005 < 1.0008 < 0.0005 < 0.0008 < 0.0005 < 0.00050.070 NE 0.0005 < 0.0005 : 0.0005 < 0.0005 0.0005 < 0.0005 < 0.000S < 0.0005 n-Butylbenzene < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 0.0005 < 0.0005 < 0.0005 N sco-Bulylbenzene tert-Butylbenzene M 0,0905 < 0.0005 < 0.090S < 0.0005 0.0905 < 0.0005 < 0.0005 < 0.0005 artion tetrachloride < 0.0005 0.0008 0.00085 0.003 0.0005 < 11.0005 < 11.0008 < 0.0008 < 0.0005 Chlorobenzene <0.0005 0.1 0.0005 < 0.0005 < 0.0005 <0.0005 < 0.0005 <0.0005 < 0.0005 Dibromacluleramethane NE 0.0005 < 0.0005< 0.00005 < 0.0005 < 0.0008 < 100005< 0.0008 < 0.0005 NE 0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.07 0.0005 1000145-1 0.00033.4 0.0029 < 0.0005 4.000031-1 0.002 DUDINISS. NE 0.0885 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 2-Chleratelucue (o-Chleratolucue) NT 0.0005 < 0.0005 < 0.00005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 4-Chlerotoluene (p+Chlerotoluene) NE 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 8.0005 NE 0,0005 < 0.0005 C 0.0005 < 0.000S : 0,0005 < 0.0005 Dibromomethane 1,2-Dichlorobenzene (u-DCB) 0.0005 ≤ 0.0005 < 0.0005 < 0.0005 < 0.0008 < 0.0005 < 0.0005 < 0.0005 0.6

.7:06-10 Long-Time Monitoring Well Sampling Berniese Appar Capa, Taglood, Ware: Supply Cooperative, Martpes, MA

vocs

Pity berzene

Nandithalene

Bergerie

Styrene

Toluene

Vinyl chloride

Broenebenzene

Bronnelorna

Chlereethanc

Chloremethane

.3-Dichlorohenzene (m-DCB)

(,4-Dichlerobenzene (p-DCB)

Dichlorodifluoromethane

1,1-Dichloroethane

1.2-Dichloroethane

1.1-Dichloroethylene

1,2-Dichleropropane

1,3-Dichleroprepane

2.2-Dichloropropane

1.1-Dichloropropene

Buranone (MEK)

Bromechloremethane

cis-1,3-Dichleropropene

4-Methyl-2-pentanene (MIBK)

cis-1.2-Dichloraethylene

Trans-1,2-Dichloroethylene

NE

0.005

112

 $0.070^{(2)}$

0.005

0.007

0.07

0.1

0.005

NE

ŃĪ

NE

0.0054

4

0.35

NT.

0,0005

0.0005

0.0005

0.0005

0.0005

0.0005

0.0005

0.0005

0.0005

0.0005

0.0005

0.0005

0.0005

0.01

0.01

0.0005

< 0.0005

< 0.0005

< 0.0005

< 0.0005

< 0.0005

< 0.0005

< 0.0005

< 0.0005

< 0.0005

< 0.0005

< 0.0005

< 0.0005

< 0.0005

\$0.01

< 0.01

<0.0005

< 0.0005

<0.0005

< 0.0005

< 0.0005

< 0.0005

<0.0008

<0.00035

<0.0005

< 0.0005

0.00005

0.00005

0.0005

<0.00085

<0.01

<0.01

(0.0005

< 0.0008

< 0.0005

< 0.0005

< 0.0005

< 0.0005

< 11.0005

< 0.0005

< 0.0005

< 0.0005

< 0.0005

< 0.0005

< 0.0008

0.0005

:0.01

< 0.01

<0.0005

< 0.0005

<0.0005

< 0.0005

< 0.0005

< 0.0005

< 0.0008

< 0.0005

<0.0005

< 0.00035

: 0.0005

< 0.0005

0,0005

0.0005

<0.01

<0.01

0.0005

< 1.0008

< 0.0005

< 0.0005

< 0.0005

< 0.0005

< 0.0005

< 0.0005

< 8 0005

< 0.0005

< 0.0005

< 0.0005

< 0.0008

0.0005

+0.01

< 0.01

<0.0005

< 0.0005

< 0.0005

< 0.0005

< 0.0005

< 0.0905

< 0.0008

< 0.0005

<0.00045

< 0.0005

: 0.0005

: 0.0005

: 0.0005

0.0008

<0.01

<0.01

0.0005

< 0.0005

< 0.0005

< 0.0005

< 0.0005

< 0.0005

< 0.0005

< 0.0005

< 0.0005

< 0.0005

< 0.0005

< 0.0005

< 0.0005

0.0005

=0.01

<0.01

<0.0005

Chlorefam

Brochumethane

o-Xylene

June 2021 Gaa

Watermark

Table 1-2 Volatile Organic Compounds – EPA Method 524.2 (mg/L) Shallow and Deep Screens at Sentry Wells 2021 Sampling Results, UCRWS, Massachusetts

Notes:

Results in **bold** were detected above inborntery reporting limits.

Samples analyzed by TestAmerica Laboratories, Inc. of Savannah, Georgia.

* Limit of quantitation presented as detection firmits.

⁽²⁾ Water Quality Standard Levels are the Massachusetts Maximum Contaminant Level (MMCL, 2020) unless otherwise noted.

⁽¹⁾ Water Quality Standard Levels are the Massachusetts Drinking Water Quidelines developed by the Office of Research and Development.

⁽³⁾ Xylene Standard based on Total Xylene.

⁽⁹⁾ Water Quality Standard listed is for 1,3-dichloropropene (i.e., the sum of cis-1,3-dichloropropene and trans-1,3-dichloropropene).

J = Result is less than the reporting limit but greater than or equal to the method detection limit. Concentration is approximate, mgL = Milligrams per Liter

< - Less Than

NE - Net Established

Prepared By: BG Checked By: MM

Watermark

. 7005-00 Long-Term Monitoring Wel, Sempling Services Appen Cape, Taploral Water Septity Cooperature, Mathiae, MA

Page lot 1

	Water	I all one of a second					1				12					
Sample 10	Quality Standard	Reporting	C.15	C ID	C.2S	C.2D	C.38	C.3D	C-4S	C ID	C 55	CED	C 65	C @	C 78	C D
Sample Date	Level ⁰¹ (mg·1.)	(III.2.II)	05/18/2021	05/20/2021	05/19/2021	05/19/2021	05/18/2021	05/20/2021 05/19/2021	05/19/2021	05/19/2021 05/20/2021		05/20/2021	05/19/3021	05/19/2021	05/19/2021	05/19/2021
(Spilnstree																
2,6-Disminuel animendame	ME	0:0005	+0.0005	<0.0005	+00005	<0:0005	< 0.0005	<0.0005	< 0.0005	<0.0005	< 0.0005	<0.0005	+:0.0005	~0.0005	< 0.0005	<0.0005 ×
2,4-Disminu-6-nitrational	ME	0.00025	< 0.0025	< 0.00025	~ 0.00025	<0.00025	× 0.00025	< 0.00025	~ 0.00025	+0.0005	<0.00025	< 0.00025	<0.00025	< 0.00025	≈ 0.00025	+ 0.00025
DACK	NE	0.00025	+:0.05025	<0.00025	×-0.00025	< 0.00025	< 0.00025	< 0.00[05	 6.00025 	+:0.60025	< 0.00025	<0.00025	< 0.00025	~ 0.00005	< 0.00025	< 0.00025
KDX	NE	0.00025	< 0.00025	< 0.00025	~ 0.00025	< 0.00025	< 0.00025	< 0.00025	0.00025	<: 0.00003	< 0.00025	< 0.00025	< 0.00025	~ 0.00025	< 0.00025	< 0.00025
Piorie acid	NE	0.00025	< 0.00025	< 0.00025	< 0.00025	< 0.00025	< 0.00025	< 0.00023	> 0:00025	<: 0.00025	<0.00025	< 0.00025	< 0.00025	~ 0.00025	< 0.00025	< 0.00025
.3.5-Trinitrobenzene	NE	0.00025	< 0.00025	~ 0.00025	< 0.00025	<100002×	<0.00025	< 0.00023	< 0.00025	~ 0.00025	< 0.00025	< 0.00025	< 0.00025	< 0.00025	< 0.00025	< 0.00025
.3-Dinitrobenzene	NE	1.00025	~ 0.00025	~10,00023	> 0.00025	<10.00023	<0.00025	< 0.00025	< 0.00025	< 0.00025	<0.00025	< 0.00025	~2000.0 >	~ 0.00025	< 0.00025	< 0.00025
Nitrobenzene	NK	0.00025	< 0.00025	< 0.00023	< 0.00025	\$2000.0 s	<0.00025	< 0.00023	< 0.00025	< 0.00025	<0.00025	< 0.00025	~ 0.00025	< 0.00025	< 0.00025	<0.000125
l'eayl	NK	1.00025	< 0.00025	< 0.00023	~ 0.00025	<0.00025	=0.00025	< 0.00025	= 0.00025	~ 0.00025	< 0.00025	< 0.00023	< 0.00025	+ 0.00025	< 0.00025	= 0.00025
Nitroglycerin	NK	1005	> 0.005	= 0.005	= 0.005	+= 0.005	= 0.015	< 0.005	=0.005	c 0.005	÷0.005	÷ 0.005	< 0.005	= 0,005	<0.000 s	= 0.005
2,4,6-Trinitrotohene	NK	0.00025	~ 0.00025	~= 0.00025	< 0.00025	~ 0.00025	= 0.00025	~ 0.00025	≈ 0.00025	× 0.00025	= 0.00025	< 0.00025	~= 0.00025	÷ 0.00025	= 0.00025	< 0.000125
P.Amino-2.6-dinitrotehene	NK	0.00025	< 0.00025	< 0.0025	¢ 0.00025	< 0.00025	= 0.00025	< 0.00025	< 0.00025	< 0.00025	÷0.00025	<0.00025 <0.00025	<0.00025	< 0.00025	¢ 0.00025	= 0.000125
2-Ammo-4.6-duitrotohene	NK	0.00025	< 0.00025	× 0.00025	< 0.00025	< 0.00025	< 0.00025	<. 0.00025	< 0.00025	< 0.00025	< 0.00025	< 0.00025	< 0.00025	< 0.00025	< 0.00025	< 0.00025
2.6-Dimmentent	NK	0.00025	< 0.00025	<0.00025	< 0.00025	< 0.00025	< 0.00025	< 0.00025	< 0.00025	< 0.00025	< 0.00025	< 0.00025	< 0.00025	< 0.00025.	< 0.00025	< 0.00025
2.4-Dimitrachiene	NK	0.00025	< 0.00025	< 0,00025	< 0.00025	< 0.00025	< 0.00025	<0.0000.0	< 0.00025	< 0.00025	< 0.00025	< 0.00025	< 0.00025	< 0.00025	< 0.00025	< 0.000125
2-Nimtalaane	NR	0.00025	< 0.00025	<,0.00015	< 0.00025	< 0.00025	< 0.0002S	<0.0000.5	< 0.00025	<0.00025	< 0.00025	<0.00005	< 0.00015	< 0.00025	< 0.00025	< 0.00025
3-Nitruiduene	NE	0.00025	< 0.00025	<0.000035	~ 0.00025	< 0.00025	< 0.00025	< 0.0070.5	< 0.00025	<0.00025	< 0,00025	< 0.00005	<0.00015	< 0.00025	< 0.00025	~ 0.0002S
1-NAmbulane	NE	0.00025	< 0.0025	< 0.00025	× 0.00025	< 0.00025	< 0.00025	< 0.00025	≈ 0.00025	< 0.0005	< 0.00025	< 0.00705	<0.000035	< 0.00025	< 0.00025	< 0.00025
PETIN	ME	10.0	- 0.01	< 0.01	± 0.01	10.0>	< 0.01	<0.01	+0.0H	× 0.01	10.0 %	< 0.01	10.05	100×	<0.01	10.0 %
Metric Samples anàyzzed by Eurofinas TestAmetrica Lebonatories, Inc. ed Sorth Britingion, Vermout. A 1 àrd of questitativa generatural sociatestine lindits. 19. sociaes descrites de sector de la Rossedimente Assertance Contentionent Lead (EDACT - 1070) entres discrition	thimerica Labor es disertire line es the Arecord	rationales, Ibo. ed.) Its: Mandre Streetman	Sorth Britington, Vermont	on, Vermort.	and		1									
A No Formation And And And	NORTH AND A			International States			ż		ne.T. Millio	med. Milliorano nee 1 hee					Bree	Pressent For But
															5	thedad by: NM
1 2016 OD 10mg 1 eem Monnecht, Wel Sergit-g Genose Under Gate Roederd Witte Samp Consertier, Malana, MA	Districting Service	5														Ine 701
and a second sec	Approx 2 Approx 2	54.33					Papel of 1									COLM.

					202	Shallow and	d Deep Sere e Results, Ut	Shallow and Deep Servens at Scury Wells 2021 Sumpling Results, FICRWS, Massuchusetts	ry Wells seach restla							
Sample ID	10.00	Laborstory Reporting	C IS	c m	C IS	C 20	C 38	C 3D	C #S	C 4D	C IS	CSU	C 68	C 6D	C 7S	C 30
Semple Date	Sec. 64		1202/81/50	100000250	1000151/60	1202/61/20	05/18/2021	1202/02/50	1202/61/50	05/19/2021 05/19/2021 05/20/2021	05/20/2021	1006/02/50	1002181/60	1000/01/50	1202/61/50	1202/61/50
Perchlarate and FDR																
Perchlorate	1.002	counts		=0.00015	0.00005	<0.0000		<0.00000	SUUULU-	0.000504	<0.00005	=0.00015	0.000064	<0.0001s	<0.0000	
L(2-Dibromoshare (EDB)	0.00002	0.000018	× 0.000018	~ 0.00012		×100000.0>	< 0.000015 < 0.000015 < 0.000018	<100000.0×	<0.00018	 0.000018 0.000018 0.000018 	<0.00018	< 0.000018	< 0.000018	x1000013 > \$1000010 > \$1000010 >	~ 0.00018	STUUDULY >
* Limit of point or presenten as exercised innus. 27 Years Quality Standard Layabaset the Messadousetts Maximum Contaurisent Layal (MMCT, 2020) unless allowise notati-	entert us deter- avails are the 1	tion Innits. Missourhusetty I	Maximum Co	al surinnels	vel (MMCL).	2020) unless 1	ulturoise not	н								
NGC - Door Catholication				1940	a					mpf Multigrams per Lier	¥				Pro-	Prepared Dyr. BG Checked Byr. MM
1912-01 - anglern Monsons Wal Sould of New en Jeper Die Regord Was-Depty Diese aus Kieder We	i Swiding Serie Live See V. Kin	÷.					1. H. J. H. J.	ç								Tota and Concount

Watermark

ATTACHMENT B

Chain of Custody Forms, Low Flow Data - Field Results, 2021 Sampling Event

			N.S.	Maxim	本して	
Client Information		Brinn Gronur	+ 11	HOUTEN TOTON LARGE	Total and the	GDD Nu 0580-125902+497785.2
unaccommun Claff Westphalen	- L13 anord		16	Jany	State of Organ	Partiete 1 OF 2
carola v. WatarMatk Environmenta, Inc.		264	aD.	Analysis	Analysis Requested	
Maress. 175 Cabol Street	Due Date Requestert	kt		-		ado
Crs. Lowel	TAT Requesting (nays					
Stan 200 MM, 01854	Compliance Project:	SE VIN AND		idmo T		
mar 9/18-171- 8626	NO F	W21-12464	464	(av) ۱۹۹۹ (E-C ۱۹۹۹ (E-C ۱۹۹۹ (E-C		
Prose Name Joint Base Cape Cod - 2021	Proper #.	00-900L1	00	100 500		K EDIA L-COA
"UPPER Cape Regional With Supply	250746			OND - PI SingLinn OWE - Pi Kuyati - Pi		01 000
Sample Neutrification	Sample Date	Sample (C	Type Natrix Type Iscence (C=Comp. G=Grap.	bonate 3 bios		1909anuki 16201 2000 2000 2000 2000 2000 2000 2000
	X	-	1.42 -	X N N N		
TS-051821	5/18/21	0800 N	NIA Water		68	They too mano in too
C3-5-051821	10 W	1340 G	Grab Water	XXXXX PH II	0-19	Cell Phy to discuss
C1-S-051831	*		Godo Maler		9237	# Percentaria Sumbus
C R-5- 051921	5/19/21	-	Grab Water		Che	are foul filtered
CA- D- 051721	19 11	DBHS G	Grab Water	10.1		# Ship perculante Sudde
C4-5 - 051321	_	1010 6	Gals Water	× X X X X N N	Cus	
C4-D - 051921	-	1010 6	Grib Water	0.1	icedy	Employed to be shopped
CT -5-051921	_	1155 60	Gas Water			
C7-D-051921	_	1220 60%	-	L Meer Br X X X X X	-	
16-5-051921	1	1350 6	Gab WARCE	XXXXXX		
C4-P-051421	→ 	1400 6	Gab WATER	XZ		
م ا	DISCR. B. LINANUMI	uni TRadiological	losea!	-	Sample Disposal / 4 her may be assessed if samples are retained longer than 1 mouth) Defined and the same for a second of the first second for the second f	faired longer than 1 month)
Other (specify)		L .		Special Instructions/002 Key are -ents		1 000000 COM
Emply H4 Reinquisited by.	100	Date:		Time:	Number Shemon	
atimatical C. R.	Strate	54	17 M	Withmen Herdrach	1 al area	11 151 Corust
diaquature by On the	N.	ee LI	4. Jours	0	Creater Free	
S 1	limiter	10.00	fuedac:		1/12/C	(1 'eff Corpus
Custody Saals Intect. Custody Seel No. 5 Yes 5 No.				Crister Temperatured / C and Oth	Card Unite Romans A. 7 (r)	10 -11-0

Client Information											
of Fourtes		Brin Gerwer	Mache	Vientrau	17 11	Jam Lund	Ya	1-1-0 	-	GBC No: 680-125905-46795.1	1 5629
Americanican OluF Litestophille	Phone 617	617-460 (- Mile	Jerry Level and	olmser cot		States or Cropic		Paper che	2.5F.2
4. om paker Walen Mark Erreinonmertial, inn.			CINC MARK	-		Ar	alysis R	Analysis Requested		\$ 10F	
Popers 176 Cabol Street	Dia Cato Requested:	:00	2		(.3)		-			Preservation Codes:	
Diy cowell	VAT Requested (days)	5	Dias		You					A HCL R-NSOH G-71 AMBRE	N Hearte N-Manu
5400.2p. M.A. 01854	Contraince Project	1 744	A No	Г		(_			D - Nets Acid E - NAHSDI	P - Na27045 0 - Na2503
918-111-8416	PO3	W 21-12464	1464	14	13 13	and				F - MeOH G - Amehoa	R NACEON 5-NESON
anus Jugas semeta Jõjva larmatkenv som	AF COM				siste	isyd	>+440				U-Acerne V-MCAA
Presci Ranse Care Cod - 2021	ł	17006-	-00-		riy pa	-2)	ניון		i Carijelje		14, 5444-5 2 etho: (specific)
UPPU C.G. REDWIL WITH PUTTING	55,049.				acindia	antric	4		10 C C C	Other:	
	Servels Pata	Sample	Sample Type [C=crent, a		R (GOM) - 1 74 8 (GOM) - 1 74 7 75	energend_s.ec	37183		adruk 1910		
	X	X	-112	2		Z	ł		17	1	ppocial instructions/Note:
C5-5-052021	5/20/21	5080	GOAB	F	XXZP	XX	×			1	Pue to 1
C5-0-052021	:	0805	6CA3	N A JOIEN	XXN	XX	×			1	
C3-0-052021	_		GRAG	T INIEW	X	×	2				
C1-D-051011	>	· · · ·	-	Water N		×	×				
				Waler	-		-				
				Waler	-		F				110 1.00
				Water	1.		F				
				Wates					-		
				Weles					-		
				Water			-				
				Water							
					Sample Dia	A) issoci	hee may b	Sample Disposal (A fee may be assessed if samples are retained fonger than 1 month	toles are relation	ed longer than	t i esonelei
Other (specify)	1000000 0 0000000		Recipion	47	Special Instructional QC Requeraments	Hotion To Chord al Instructions/OC	C Rudurfa	"Disnonai B ₂ Lab nerta	- Archive For	ve For	Abacha
moly for Mehrquished by.		Date:		Tree				Met of or Bronovi	irord.		
munut Br. M.	1. Planten	151		Unternant	Cat-	11.	1		Interfret L	150	Canpary A
minumate D. B.	STUL2		3	Contrary	Recher	and the		19	ation Time	-	
1	1500TRG		8	fuedaco.	Sarahad by	14	M-W	0	DusTite (/L)/24	21 1015	Williams
Custody Sents Minut Custody Scertitio					Court's	Coler Terror alume, 10 and 10mm Roomd-	C and thus		5 21 6.7 \	1 2/20	-

Page 95 of 102

6/15/2021

	CHAIN OF CUSTODY	OF CU	STOD		FORM		8 Jan Set	DTECH	ENVIROTECH LABS, INC. 8 Jan Sebastian Dr., Unit 12	Client: Watermark Environmental 175 Cabot St	invironment:
oj. No.	Project Name:	Vame:	Uppe	r Cape	Upper Cape Regional Water Supply UCRWS-2019 202 (Sandwitch, MA 02563 (503)888-6450/1-800-339-5450	1, MA 05	2563 339-6460	Address: Lowell, MA 01854 cell: 617-960-6476	1854
ampler:	Bin Gurger	Surge	- when	Y Y	M OSC has		FAX (508)888-6446)888-64	46	Phonet: 978-452-9696 ext. 213 brian.geringor@watermarkenv.com	s ext. 213 harkenv.com
- - - - - - - - - - - - - - - - - - -	Date	Time	Comp Grah	Grab	Sample location		container	Pres.		Analysis Requested	
	51321	1340		×	C'3-5-051821	23	500 ml	ice	pH,Specific C	pH.Specific Conductance, Turbidity, Alkalinity	Alkalinity
	5/18/21	1510		×	C1-5-051821		500 ml	ice	pH, Specific (pH. Specific Conductance, Turbidity, Alkalinity	, Alkalinity
				×			500 ml	ice	pH, Specific (pH, Specific Conductance, Turbidity, Alkalinity	, Alkalinity
				×			500 ml	ice	pH, Specific (pH, Specific Conductance, Turbidity, Alkalinity	, Aikalinity
				×			500 ml	ice	pH, Specific (pH, Specific Conductance, Turbidity, Alkalinity	, Alkalinity
				×			500 ml	8	pH, Specific (Specific Conductance, Turbidity, Alkalinity	, Alkalinity
				×			500 ml	ŝ	pH, Specific (pH. Specific Conductance. Turbidity, Alkalinity	, Alkalinity
				×			500 ml	ice	pH, Specific (pH, Specific Conductance, Turbidity, Alkalinity	Alkalinity
clinquished	Ľč				DaterTime 1570 B	Received:	Andre 15.50	120	Reliquished:	Deterfine Received:	ved:
eltinguisticat	-					Raneived:			Relinquished:	Date/Time Received:	.bed:

0. Project Na lor: Brism G Slinfzi Slinfzi				T FORM	8 Jan	Sebasti	8 Jan Sebastian Dr., Unit 12	Cilent: Watermark Environmental 175 Cabot St
	2	Upper	UCRV	· Cape Regional Water Supply UCRWS- 2018 ²/ 202 (Sand (608)81	Sandwich, MA 02563 (508)888-6480/1-800-339-6	Sandwich, MA 02563 (508)888-646011-800-339-6460	Address: Lowell, MA 01854 cell: 617-960-6476
Date 5(1)j_1 5(1){21 5(1){21	Bernge	Mik	Matche	4	FAX	FAX (508)888-6446	6446	Phone≄: 978-452-9696 ext. 213 brian.geringer@watermarkenv.com
-	Time	Comp	Grab	Sample location	container	ner Pres.		Analysis Requested
	8		×	C3-5 ~ 051721	500 ml	nlice		pH,Specific Conductance,Turbidity, Alkalinity
	0845		×	C3-D - 051921	500 ml	nlice		pH, Specific Conductance, Turbidity, Alkalinity
	1010		×	C4-5 - 051421	500 ml	lice		pH, Specific Conductance, Turbidity, Alkalinity
5/14/21	0101		×	C4-D, 051921	500 ml	je je		pH, Specific Conductance, Turbidity, Alkalinity
5/15/21	liss		×	C7-5-051921	500 ml	alice	8 3	pH, Specific Conductance, Turbidity, Alkalinity
કાંધીય	1220		×	C7-D-051921	500 ml	nl ice		pH, Specific Conductance, Turbidity, Alkalinity
Shiltri	1350		×	C6-5-051921	500 ml	nl ice		pH, Specific Conductance, Turbidity, Alkalinity
สหเน	(da)-1		×	(6-0-051921	200 ml	nl ice		pH, Specific Conductance, Turbidity, Alkalinity
ielinquished:					Resolved: SI	Sigler	Reliquished:	Date/Time Recoived:
telinquished:	4		Τ	Date/Time Rece	LODALLER- Received:	9.0	Relinquished:	Date/Time Received:

	CHAIN	CHAIN OF CUSTODY	ISTO	DY FORM	RM		ENVIR(8 Jan Se	DTECI	ENVIROTECH LABS, INC. 8 Jan Sebastian Dr., Unit 12	Client: Watermark Environmental
² roj. No.	Project Name:	Name:	Upp	er Cape	Upper Cape Regional Water Supply UCRWS-2018-2021	hido	Sandwich, MA 02563	h, MA (2563	Address: Lowell, MA 01854
Sampler:	Brim	Brim Gungur/	- I	~ ~	Mosches		FAX (508)888-6446	9-888(146	CGEN: 01/-960-6476 Phone#: 978-452-9696 ext. 213 hrian generation
ab ID:	Date	Time	Comp	Grab	Sample location	u	container	Pres		Arehele Bornoted
	5120/21	0205		×	CS-5- 052021		500 ml	ice	pH,Specific C	pH,Specific Conductance,Turbidity, Alkalinity
	Staler	0805		×	C5-D-052021		500 ml	ice	pH, Specific (pH. Specific Conductance, Turbidity, Alkalinity
	Stalte	0435		×	C3-D-052021		500 ml	Ice	pH, Specific (pH, Specific Conductance, Turbidity, Alkalinity
	stur	1125	-	×	CI-D-057021		500 ml	ice	pH, Specific C	pH, Specific Conductance, Turbidity, Alkalinity
				×			500 ml	ice	pH, Specific O	pH, Specific Conductance, Turbidity, Alkalinity
				×			600 ml	ice	pH, Specific C	pH, Specific Conductance, Turbidity, Alkalinity
				×			500 ml	ice	pH, Specific C	pH, Specific Conductance, Turbidity, Alkalinity
				×			500 ml	ice	pH, Specific C	pH, Specific Conductance, Turbidity, Alkalinity
	B: 35%]	1		Date Time 1.2612	Received:	2/2	6 27 13.25pm	Reliquished:	Datel Time Received:
slinquished:				0	Date/Time	Received:		_	Relinquished:	Date/Time Received:

5102 Laiftoche Avenue Savannah, GA 31404 Phone: 912-354-7856 Fax: 912-352-0165	0	Chain o	of Cust	ody R	Chain of Custody Record			Curofins Environment Teshing America
Client Information (Sub Contract Lab)	100c			Laner	Laries, Jerry A		c-pent	CDIC MAC 080-654993.1
Clear Contact Shipping/Receiving	Phone			Jerry.	EMar Jerry Lanier@Eurofinsel.com	State of Origin Massachusetts	elts	Page 1 of 2
Convary Nipha Analytical Inc					Aureolations Rouwed See DcD ELAP - A2LA, DoC	Aurediation Rounned (See now) DCD ELAP - AZLA, DoD ELAP - L-A-B, Federal - US Fish &	S Fish &	Jian # (280-199232-1
Addense 8 Walkup Drive.	Due Date Requested! 6/11/2021	HI.			1	Analysis Requested		8
Chy Westboro	TAT Requested (d)	-046			318			A - MCL N - Manane 8 - NaOH N - Nana C - 2n Areirata O - Arha02
5140, ZP MA, 01581					iolitan			p - Netric Acid P - Na2045 T - NaPISO4 D - Na2103
Phone	PO#						_	
195	NO N				(0)			n - Association Acod 1-lice Di Watker
Proof Name Joint Base Cape Cod + 2017 - 2021	Project #				10.94			L-EDTA L-EDA
	SSOW				N) as			of cen
Sample Identification - Client ID (Lab ID)	Sample Date	Sample Time	Semple Type (C=cemp,	Natrix (arreat presents)	: Deral@1 Dee/ MicM minohe/ 0.511 An3) Bus			100 Special Instructions/Mode
	X	X			X			
C3-S-051821 (630-199232-2)	5/18/21	13.40 Eastern	-	Water	×			+
C1-S-051821 (630-199232-3)	5/18/21	15:10 Faulton	T	Water	×			
C2-5-051821 (630-199232-4)	1251/5	C6.30		Water	×			+
C2-0-051821 (830-199232-5)	5/1921	CB:45 Factorn		Water	×			
C4-5-051821 (680-199232-6)	5/1921	N0.10 Eastern		Water	×			1
C4-D-051821 (630-199232-7)	5/1921	10.10 Exclarm		Water	×			
C7-5-0018021 (080-199232-0)	1261/2	11.55. Eastern		Water	×			1
C7-D-051821 (63D-198232-3)	12605	12.20 Eastern		Water	×			
C6.5-051821 (810-199232-10)	5/19/21	13.50 Eastern		Water	×			1
itelit: Since lationalize percentitations are subject to change. Eurofine TestiAnneous peo maintais ecceedation in The State of Object tookia accerd for analyzistimation are connext to aver TestiAnences attention immediately. If all requested accerdingtions are connext to date.	Menoca places the several states of the several states and the several several states and the several se	p of setted, and mpter most be i Chan al Custo	the A accedute shoped back is by stessing to s	Automotians the Euroleur 1 aid completan	et the derived by a waithed, and yet & accorditation complement apon out autourneed about analysis, the excepter movil to singred back to the Euclidea Transmission labourneed about estim the agreed Chain of Custology stressing to sall complexities to Euclidea Testhampica.	ot the enverties of setting analysis & accerdition complexes each out substrated secondaries. This service substrates a arrainable free enroped mout lear singered loads to the Eurobian Texa Analysis allocation of a contraction within provided. An electric free agreed Chen of Custory intesting to safe complexities to Eurobian TextAmenica.	a forearded unter chemical custody Any changes to accreditation status	This somple statement is low-and/or under chain of curboly. If the lateratory done not currently closes within provided. Any changes is accorditation status, should be brought to Eurofina
Possible Hazard Identification					Sample Disposal (4 he may be assessed I	samples are reta	Sample Disposal (A he may be assessed if samples are retained longer than 1 month)
Unconfirmed Defeetable Requested: 1. II. III. N. Other (specify)	Printery Defectable Rank 7	the Rank 1			Refum To Clent Dig	Int Disposal Br Lab	ab 0	Archive For Morths
	and the second se			ĺ		Æ		
Empry Kc Reimquished by:		Date			ime:	U A Wehed	ethod of Shipstein	
	S-36-31	18:51	<u>č č</u>	MA Same	Received by A	IF ALL	Date The	1/102/Conser
nautred by	DateTime		3	Constants	Received by		Date/Time:	Corpery
Strategy Books Latence (Strategy, Strategy,								

Euronna resolutiona avannan 502 Lagona Avenue Savanan, GA 31400 Phone 912-354-7858 Fax 912-352-0165		Chain e	of Cus	tody R	ecord	Chain of Custody Record L21 28 [97]	L618		🖗 curofins	Earleanntat Tesling. Arealea
Client Information (Sub Contract Lab)				Lank Lank	Lanior, Jarry A		Carser Tracking Nots	15 John Sta	COC No. 630-654993.2	
Crew Contact Shipping/Receiving	Ptone			Jerry	E-Mail Jerry Lanier@Eurofnset.com	of nset, com	State of Orgin. Massachuse8s	ri sees	Page 2 of 2	
Commeny Alipha Amalytical Iric					Conditions	aquired (See not) A2LA, DoD ELAP	Acceditations Reamed Size multi DoD ELAP - AZLA, DoD ELAP - L.A.E, Federal - US Fish &	JS Fish &	300 F	
Address 8 Walkup Drives	Due Date Requested: Birl 1/2021	H.				Analys	Analysis Requested		Preservation Codes	fest
Cay Westbord	TAT Requested (d	ays):			9.0				R- NaCH R- NaCH C- Zir Atelste	M - Mourte N - Motor O - Author
Sam, Zu MA, OTSB1					109434				C - Nime Acid E - NaHSOs	P- N42043 Q - N42003
Note the second s	FOR							_	F - MeCH C - America	8 - Na25203 5 - 112504
rai	NO 4				(0	_		_		1 - 15P Dodecatyman U - Actime V - MCAA
Nojel Name. Juliii Base Gape Guu - 2017 - 2021	Project a 660.16167				N 10 Se.	_			N-EDTA L-EDA	W - pH 45 Z - Other Itssechur
	BSCIVIE				0.051				of co	
Samble (dentification - Client ID (Lab ID)	Sample Date	Sample Time	Bemple Type (Cricomp. Gearab)	Marris () () () () () () () () () () () () ()	and the second s			_	tedriv N Hafel 00 00 00 00 00 00 00 00 00 00 00 00 00	Special Instructions/Note:
	X	X	Preserval	Preservation Dode.	X					
C6-D-051821 (680-199232-11)	5/19/21	14:00 Exsteen		Water	×				1	
C5-5-052021 (660-199232-12)	5/20/21	08:05		Water	×				1	
C5-C-052021 (660-199232-13)	5/20/21	08.05 Eastern		Water	×				+	
C3-C-062021 (680-199232-14)	5/20/21	09.35 Esstern		Water	×				1	
C1.C.052021 (600-199232-15)	5/20/21	11.25 Fastern		Water	×				-	
one force laboration accessibilition are subject to change. Eurofina Treat/America pair Laintion accessibilition in the Same of Oxign Isabes above for europea/muth/maint avorg esubmerica etheritori etmediately. If de recursises accessibilitions are current to date.	dAmerca places fre swerzh Amatre baing analyted. Fre s ment to date, return fre togre	o of refined, an amplies must be of Charls of Curve	wyleå accred s sligsed taox ofy alletting to	tation complian to the Europhican Hand complicant	e vpon out sub esemenca lab e to Eurofina T	ormed laporetiles. 7 secory or other ristium estiments.	cal the average of retried analysis accorditation complexes upon our uniconnect bibotalities. The service entries in travarates under character-casteds averaged, the service must be shown such the function featurence lationary or other restructions with a provided, any charges is accordition status entries layed. Character and custory alterting to sard complicance to Eurofree Teachmonica.	tonvarched under cl ny changes to acco	call the investries of interrul, analysis accordance remaining upportance. This service strands is a market under charon-eleasted: If the laboratory derived cu analysed. The samples must be proportiated in the Euclidea Traitements indevelop or viral restructions will be provided. Any charget it accordington states should be trought in Euclides event the logiest Charlot Custory stretcy in spatrampicance to Euclidea Traditions.	If the labeledy does not currently should be trought to Eucline.
Possible Hazard Identification Unconfirmed					Sample I	tiposal (A fee m um To Claint	ay be assessed it sam	samples are n	Sample Disposal (A fee may be assessed it samples are retained longer than 1 month. Present Tr Client Discoverial B. Lab. Archive For Marker	l month) Marine
Deliverable Requested: I. II, III, IV, Other (specify)	Primary Deliverable Rank	able Rank 2			Special Ir	Special Instructions/QC Requirements	Arrements.	ators	00 1 00000 001	
Emply Kit Relinquished by.		Date			ine	A.h.	Metro	ol of Shipmont	10	
As persentance A	S-363	ST	15	Suran S	U Receivedby	All Allower	M	Dawlond D	11 10:16	Company
watched by	DateTime			Auduto	Hacewechy	App		Date/Time		Company
Protecto Contribution Protocol Contribution			1		1		and a second sec			

Class Information Data Data <thdata< th=""> Data Data</thdata<>	Savamman, u.A. 31404 Phone: 912-354-7858 Fax: 912-352-0165					5			America	nerce
Diskleige Frink Frink Erwis Erwis unfry Ditte: S.a.h 1, Kunstenden Acceleration Acceleration unfrieden Class 10,1 Standa Acceleration Acceleration On Participan Standa Standa Acceleration Acceleration Class 10,0 Standa Standa Acceleration Acceleration	Client Information (Sub Contract Lab)	Sempler			Lab PAt Lanler, Jo	TYA	5	cking No(st:	000 4n 660-554730.1	
Internationality Constraint Constraint Constraint Only Only Non-and transmission Non-and transmission Non-and transmission Only Only Non-and transmission Non-and transmission Non-and transmission Non-and transmission Only Non-and transmission Non-and transmission Non-and transmission Non-and transmission Non-and transmission Only Non-and transmission Non-and transmission Non-and transmission Non-and transmission Non-and transmission Only Non-and transmission Non-and transmission Non-and transmission Non-and transmission Non-and transmission Non-and transmission Only Non-and transmission Non-and transmission Non-and transmission Non-and transmission Non-and transmission Non-and transmission Only Non-and transmission Non-and transmission Non-and transmission Non-and transmission Non-and transmission Non-and transmission Only Non-and transmission Non-and transmission Non-and transmission Non-and transmission Non-and transmission	Gent Caribot: Shipping/Receiving	Phone:			E-Mer: Jerry:Lani	:n@Eurofinset.com		ght: usetts	Pope Pape 1 of 2	
Unity Diret. Sub 11, Sub 11, Millentente Europhic mental (Enrophic) All Requested (Enrophic) Opin Millententente Millententente Millententente Millententente Millententente Millententente Millententente Millententente Millententente Millententente Millententente Millententente Millententente Millententente Millententente Millententente Millententente Millententententententententententententente	Company. TestAmerica Laboratories, Inc.				Abore DoD	Stations Naputed (See no ELAP - A2LA: DoD EL	te: LAP - L-A-B; Federai:	-US Fish &	.uh e 1900-1900-19	
Op/Int International (anys) International (anys) International (anys) Op/Te(I) 802-680-1010(F=ax) 007.6 90.7 90.6 Op/Te(I) 802-680-1010(F=ax) 007.6 90.6 90.6 Op/Te(I) 802-680-1010(F=ax) 007.6 90.6 90.6 Op/Te(I) 802-680-1010(F=ax) 90.6 90.6 90.6 90.6 Op/Te(I) 90.6 90.7 90.0 90.6 90.6 90.6 Op/Te(I) 90.6	Orive.	Bus Date Requests 6/10/2021	10	8		Ans	alysis Requested		on Codes	
OTF(e) S02-6400-18 10(s)(Fau) POIR P	ar South Buringtan	TAT Requested (d)	ye):		215				3	None
PO A PO A NO E NO E NO E NO E NO E NO E NO E ENDINE SSCONK Sample Matrix BSCONK Sample Matrix BSCONK Sample Matrix SSCONK Sample Matrix SSCONK Sample Matrix SSCONK Sample Matrix SSCONK SSCONK Sample Matrix SSCONK SSCONK Sample Matrix SSCONK SSCONK SSCONK SSCONK SSCONK <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>D- NDA Add</td> <td>Na2508</td>									D- NDA Add	Na2508
WD # WD # MD # MD # Matrix	Phone: 202-680-1990(Tel) 202-680-1919(Fax)	POR							F- NICH G-Anchior	NW25200 H2804
1 1	Emit	104							H-Assemic Acid	TSP Dodocahydra Acetona
Control Sample Matrix 0.04b Tane Sample Matrix 0.04b Tane Sample Matrix 221 Existin Weeks X 232 Existin Weeks X 243 Existin Weeks X 243 Existin Weeks X 244	Project Name Jon's Bases Cape Cod - 2017 - 2021	Project A: BRD1.8467						3	L- EDA	MCAA - pH 4-5 other (specify)
Cost Sample Sample Matrix Matrix Cost Time Sample (Needer, Type (Needer, Sample (Neede	Stat	SBOWH				-		2	Other:	
Obta Sample Thre Co-corres Carends Co-corres Arrange 221 53.20 53.60 Varaber X 221 53.60 Varaber X 221 10.70 Varaber X 221 10.60 Varaber X 222.2 Chall of Clastedy Varaber X 223 10.00 Varaber X 234 10.00 Varaber X 242 1 Varaber X			-	-	CI PERIOD				constraint.	
21 53.20 (5.10) Water X 221 15.10 (5.10) Water X 221 10.00 (0.44) Water X 221 10.640 (0.450) Water X 221 10.640 (0.450) Water X 221 10.600 (0.400) Water X 221 10.100 (0.400) Water X 221 10.100 (0.400) Water X 221 10.100 (0.400) Water X		Sample Date	1	_	(TIRE AND	80250			2	ž
Zz1 t5.10 Weiser X Zz1 Eastern Biol.00 Weiser X Zz1 Biol.00 Weiser X Zz1 Eiten Water X Zz1 Eastern Water X Zz1 Eastern Water X Lot Later Later X Later Later Later Later Later Later Later Later	C3-S-051821 (680-199222-2)	5/18/21	13:40		Water	×				
ZE1 06-31 Weiser X ZE1 06-45 Weiser X ZE1 Easilian Weiser X Lott Lott Lott Z Just Lott Context Method ZE1 Lott Context Method	C1-S-051821 (5e0-198232-3)	5/18/21	15:10 Eestern		Water	×				
ZZ1 U6-25 Weeker X Z21 10-10 Weeker X Z21 10-10 Weeker X Z21 10-10 Weeker X Z21 11.55 Weeker X Z21 12.250 Weeker X Z21 12.550 Weeker X Loat John Contexty X Loat Loat Loat Loat Loat Loat Loat Loat Loat	C2-S-061821 (680-198232-4)	6/19/21	06:30		Weter	×				
ZE1 00.10 10.10 Water X ZE1 10.10 10.10 Water X ZE1 1550 Water X ZE1 12.20 Water X ZE1 1350 Water X ZE1 12.20 Water X ZE1 12.50 Water X ZE1 12.50 Water X ZE1 13.50 Water X Unter 1.550 Water X Unter 1.000 Science Science Jule	C2-D-051821 (680-199232-5)	5/19/21	09-72 19-72		Weter	×				
R21 10.10 Water X R21 11.55 Water X R21 12.50 Water X Luber Location Location Location Lot Location Location Location	C4-S-051821 (G80-198232-6)	5/B/21	10:10 Eactorn		Water	×				
Col 1.55 Water X Col 12200 Water X Col 12200 Water X Col 12200 Water X Col 13500 Water X Col 13500 Water X Col 135222 Chain of Custody Control Uater 1 1 1 1 Control Control Control 2 1	C4-D-061821 (880-190232-7)	5/18/21	10:10 Eachum		Water	×				
CT 12.20 (13.50) Water X R 13.50 Water X R 13.50 Water X Later Lotter Lotter Lotter Later Lotter Lotter Lotter	C7-S-051821 (680.198232-8)	5/19/21	11.55		Water	×				
Cert Eastern Water X X	C7-D-051621 (880-199232-9)	5/19/21	12:20 Eacham		Water	×				
600-199232 Chain of Custody Juster	C6-S-051821 (680-199232-10)	5/18/21	13:50 Eastern		Water	×				
affication	Note: Since informenty eccordistions are subject to damage. Eurofine net the final scored asken in the Stein of Origin Isled access for analysis sub- treat/merce attention immodiates. Final menuated excenditations are cum	America diacest mantic baing ans rent to cafe, rolu				* subcontract later interationy or other a freedomenton.	rationies. This seems a state or instructions will be provid	nert is threated under led. Any changes to a	r andring Foundary. If the inter- constitution status should be to	Nory does not curr ought to Functing
It I. II. N. Olhe (seecity) Firman, -600-199232 Chalm of Custody actualized Requirements. Accord Requirements. Julier 1. II. N. Olhe (seecity) Firman, -600-199232 Chalm of Custody actualized Requirements. Julier 1. II. N. Olhe (seecity) Firman, -600-199232 Chalm of Custody (N. Olhert A. Olhe	Pressible Hazard identification Unconfirmed					Naposel (A fu	ee may be assessed	er ere seignes T	tained longer than 1 mo	(the
Contract Sea No.: Contract Sea	Deliverable Requested: I. II, N, Other (specify)	1	99232 Chain	of Custos	A	ishudiare/OC	Requirements:			SLOWAN
COMPUTER Contract Con	Empty Kit Relinquished		Uslet -	1			1992	od of Shipment		
Recontinue: Computer Date Note: Date Note: A Mo Constrainty Seel No.: Constrainty Control Note: Remarks: Constrainty Control Note: Remarks:	Preventional in CAR Duck	treas	N	5	0	- autor	Ohidelaurs	- 1	10110	THBU!
Cuntedy Seet No.:	Renquested by:	Recontine:		3	/uedu	Received try			Ğ	4 indu
				1		Cooke Temperature(s) ⁵	C and Other Romarks:		-	

Cline In Tribuncian Board Participan Participan Distribution Distribution <thdistribution< th=""></thdistribution<>	Information Environment Environment <thenvironment< th=""> <thenvironment< th=""></thenvironment<></thenvironment<>	Phone: 912-354-7858 Fax: 912-352-0166		Chain	of Cu:	Chain of Custody Record	ecord			🐼 eurofins	Environment Twating America
Interpretation Interprease Interpretation Interpreta	Instructionation Instrumptionation Instrumptintentent Instrumptintentent	ilent Information (Sub Contract Lab)	Santker.			r tel èrrel	t, Jerry A		Garier Tracking Notes	COC No.	
Officer Officer <t< th=""><th>Million Control <t< th=""><th>hipping/Receiving</th><th>Phone:</th><th></th><th></th><th>E-Mei</th><th>- Harles</th><th></th><th>State of Origin:</th><th>030-054/30.2 Page.</th><th></th></t<></th></t<>	Million Control Control <t< th=""><th>hipping/Receiving</th><th>Phone:</th><th></th><th></th><th>E-Mei</th><th>- Harles</th><th></th><th>State of Origin:</th><th>030-054/30.2 Page.</th><th></th></t<>	hipping/Receiving	Phone:			E-Mei	- Harles		State of Origin:	030-054/30.2 Page.	
Outcomercy Diving Galary (Second Marcin) Outcomercy Diving Concrete Diving <th< th=""><th>Outcomentation Outcomentation Outcomentation Outcomentation Outcomentation Information Information Information Information Information Information Information Information <t< th=""><th>moars: sstAmerica Laboratories, Inc.</th><th></th><th></th><th></th><th>line</th><th>ocodiatara P</th><th>tequind (See note)</th><th>Massachusetts</th><th>Page 2 of 2</th><th></th></t<></th></th<>	Outcomentation Outcomentation Outcomentation Outcomentation Outcomentation Information Information Information Information Information Information Information Information <t< th=""><th>moars: sstAmerica Laboratories, Inc.</th><th></th><th></th><th></th><th>line</th><th>ocodiatara P</th><th>tequind (See note)</th><th>Massachusetts</th><th>Page 2 of 2</th><th></th></t<>	moars: sstAmerica Laboratories, Inc.				line	ocodiatara P	tequind (See note)	Massachusetts	Page 2 of 2	
Manufacture Analysis Requiration Analysis Requiration 0.00001 0.0000	Andrete Andrete <t< td=""><td>0 Community Drive, Suite 11</td><td>Due Date Roques</td><td>thed:</td><td></td><td></td><td>NON ELAP .</td><td>AZLA; DOD ELAP - L-A</td><td>-B; Federal - US Ash &</td><td>680-199232-1</td><td></td></t<>	0 Community Drive, Suite 11	Due Date Roques	thed:			NON ELAP .	AZLA; DOD ELAP - L-A	-B; Federal - US Ash &	680-199232-1	
M. M. M. M. Description Description <thdescription< th=""> Description <thdescrip< td=""><td>M.001 Control Control</td><td>uth Burlington</td><td>TAT Requested (</td><td>(stap</td><td></td><td></td><td></td><td>Analysis R</td><td>aquested</td><td></td><td>M - H0041-6</td></thdescrip<></thdescription<>	M.001 Control	uth Burlington	TAT Requested ((stap				Analysis R	aquested		M - H0041-6
No. Holdmitting Bockelle intropped Fight Bock F	No. Homeline District Distredistr District District	. 20: 06403	Г								N - Norm 0 - AshaO2 P - NecOdS
Image: control of con	Main Main <th< td=""><td>.e60-1990(Tel) 802-680-1919(Fax)</td><td>PO#</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>G - N62805 R - N628203</td></th<>	.e60-1990(Tel) 802-680-1919(Fax)	PO#								G - N62805 R - N628203
Hold Manufaction - Clevel 10 (1-2231 Bit manufaction - Clevel 10 (1-4) (1) Bit manufaction - Clevel 10 (1-4) (1) Clevel 10	Childing State of Care Cot 2017. 2311 State of Care Cot 2		10.6								6 - H2504 T - T8P Dotecahydrate U - Acetory
Note Control Control <thcontrol< th=""> <thcontrol< th=""> <thcont< td=""><td>Control Control <t< td=""><td>ed Name 11 Base Cape Cod - 2017 - 2021</td><td>Project #</td><td></td><td></td><td></td><td></td><td></td><td></td><td>J - DI Water K - EDTA</td><td>V-MCAA W-pH45</td></t<></td></thcont<></thcontrol<></thcontrol<>	Control Control <t< td=""><td>ed Name 11 Base Cape Cod - 2017 - 2021</td><td>Project #</td><td></td><td></td><td></td><td></td><td></td><td></td><td>J - DI Water K - EDTA</td><td>V-MCAA W-pH45</td></t<>	ed Name 11 Base Cape Cod - 2017 - 2021	Project #							J - DI Water K - EDTA	V-MCAA W-pH45
Open list information - Cleve ID (Lak ID) Simple Trans Simple Trans <t< td=""><td>Bit Merification - Clear (D (t.a.) (D) Banetic (D)</td><td></td><td>SSONE.</td><td></td><td></td><td></td><td>occa 3.</td><td></td><td></td><td>L. ELA Other:</td><td>Z - clim (specty, -</td></t<>	Bit Merification - Clear (D (t.a.) (D) Banetic (D)		SSONE.				occa 3.			L. ELA Other:	Z - clim (specty, -
Decide a manufacture Second Distriction Second Districion Second Distriction Second	Mental members of the ID Mental Table (14)			Sample	Sample Type (Cheann	Matrix (9°d°0620/81	10		15 10 205 2	
OD 061821 (160-190232-11) 151921 15000 Water X Image: Status in the status in thestatus in thestatus in the status in the status in thestatus in t	D00101210000000000000000000000000000000	The measurement - Cheve ID (Lab ID)	Semple Date	~	G=grab]		6. j				fructions/Note:
6002021 (660 · 19022: 12) 600201 / 6800 90000 1 × × × </td <td>60x301 (600-10232:12) 50x301 (600-10232:13) 50x301 (600-10232:14) 50x301 (600-1023:14) 50x301 (600-1023:14)</td> <td>0-061821 (680-198232-11)</td> <td>5/19/21</td> <td>14300</td> <td></td> <td>Water</td> <td>,</td> <td></td> <td></td> <td></td> <td></td>	60x301 (600-10232:12) 50x301 (600-10232:13) 50x301 (600-10232:14) 50x301 (600-1023:14)	0-061821 (680-198232-11)	5/19/21	14300		Water	,				
OGGOD (680-1982)(-13) SCO21 RUN RUN X N OGGOD (680-1982)(20-13) SCO21 RUN RUN X N OGGOD (680-1982)(20-13) SCO21 RUN RUN X N OGGOD (680-1982)(20-13) SCO21 RUN RUN X N OGGOD (160-1982)(20-13) SCO21 RUN RUN X N OURSTOR (1600-1982)(20-13) SCO21 RUN X N N OURSTOR (1600-1982)(20-13) SCO21 RUN RUN X N Statum SCO21 RUN RUN X N N Statum SCO21 RUN RUN X N N N Statum SCO21 RUN RUN X N N N Statum SCO21 RUN RUN X N N N Statum RUN RUN RUN RUN RUN RUN RUN Statum RUN RUN RUN RUN RUN RUN RUN Statum RUN RUN RUN RUN RUN RUN RUN Statum RUN RUN <td>Operation (each -1982.0-13) SCO201 BRON Water X N<td>5-052021 (680-199232-12)</td><td>5/20/21</td><td>06:05</td><td></td><td>Water</td><td>; ;</td><td></td><td>-</td><td>51</td><td></td></td>	Operation (each -1982.0-13) SCO201 BRON Water X N <td>5-052021 (680-199232-12)</td> <td>5/20/21</td> <td>06:05</td> <td></td> <td>Water</td> <td>; ;</td> <td></td> <td>-</td> <td>51</td> <td></td>	5-052021 (680-199232-12)	5/20/21	06:05		Water	; ;		-	51	
Original (600, rigginal, right) Sconcer Filtering X Nature X Dorazilar (1600, rigginal, right) Sconcer Fightin Nature X Dorazilar (1600, rigginal, right) Sconcer Fightin Nature X Dorazilar (1600, rigginal, right) Sconcer Fightin Nature X Strong terming sconterprop accumptory a	Original (1600-19073Q-14) Constrained (1600-19073Q-15) Constrained (1600-19073Q-15) Original (1600-19073Q-15) 500001 Eastern (1800-19073Q-15) Xonothing (1800-19073Q-15) Original (1600-19073Q-15) 500001 Eastern (1800-19073Q-15) Xonothing (1800-19073Q-15) Strain (1800-19073Q-15) 500001 Eastern (1800-19073Q-15) Xonothing (1800-19073Q-15) Strain (1800-19073Q-15) Strain (1800-19073Q-15) Xonothing (1800-1907) Xonothing (1800-1907) Strain (1800-19073Q-15) Strain (1800-1907) Xonothing (1800-1907) Xonothing (1800-1907) Strain (1800-1907) Strain (1800-190-1900) Strain (1800-1900) Xonothing (1800-1900) Strain (1800-190-1900) Strain (1800-190-1900) Strain (1800-190-1900) Xonothing (1800-190-1900) Strain (1800-190-1900) Strain (1800-190-1900) Strain (1800-190-1900) Xonothing (1800-190-1900) Strain (1800-190-1900) Strain (1800-1900) Strain (1800-1900) Strain (1800-190-1900) Strain (1800-1900) Strain (1800-1900) Strain (1800-1900) Strain (1800-1900) Strain (1800-1900) Strain (1800-1900) Strain (1800-1900) Strain (1800-1900) Strain (1800-1900) Strain (1800-1900) Strain (1800-1900) Strain (1800-1900) Strain (1800-1900) Strain (1800-1900) Strain	0-052021 (680-198232-13)	5/20/21	18.05 08.05		Turber of	< >				
Oracion (600, regrosp.e.15) Fasiliary (and an university) societation of the constraint of	Dot3021 (1600-1902/20-15) Eastern Fastern Strat kurrentry sooreneren av satiert un christen Strat kurrentry sooreneren av satiert un christen av satiert un christen Strat kurrentry sooreneren av satiert un christen av satiert un christe	0-052021 (680-199232-14)	5/20/21	09:35		Wither	< >				
Bits Intercenter Control Control Control Control Bits Inter Control Control Control Control Control Bits Inter Cont	(is durarity) accuration as whiled to during a structure fragment in the construction of the during of a structure	0-052021 (680-199232-15)	5/20/21	11:25		Water	< >				
Bits terminy accumption or shield to cholor Euclide Eu	Not exercising score/doined are subject to change. Image: Statute in the statute interface in the statute interface						-				
Bits transfery accountering accounted and a larger took in anyor account of control and/or a constant of control and/or anyor accounter and a larger took in a larger took in a larger took in anyor accounter and a larger took in a larger	Bits therming converting converting and an index to make a considerer consistence of the constraints of the constraint o										
rible Heard Identification Rearry to serve of it and it	Minimole Banado Mandificación Banado Mandificación Banado Mandificación Banado Mandificación Visitina de Recuescasti I. II. IV., Other (specify) Primary De Preside Ramit: 2 Banado Mandificación Disposal film 1 monthy Visitina de Recuescasti I. II. IV., Other (specify) Primary De Preside Ramit: 2 Specify Instructionad/OC Requirementa: Disposal film 1 monthy Visitina de Recuescasti I. II. III. N., Other (specify) Primary De Preside Ramit: 2 Specify Instructionad/OC Requirementa: Disposal film 1 monthy Visitina de Recuescasti I. II. III. N., Other (specify) Primary De Preside Ramit: 2 Specify Instructionad/OC Requirementa: Disposal film 1 monthy Visitina de Recuescasti I. II. III. N., Other (specify) Primary De Preside Ramit: 2 Specify Instructionad/OC Requirementa: Menthos For Menthos Visitina de Recuescasti I. II. III. N., Other (specify) Primary I. III. III. N., Other (specify) Primary III. III. N., Other (specify) Menthos For Menthos Visitina de Recuescasti I. III. III. N., Other (specify) Primary III. III. N., Other (specify) Disposal film 1 monthy Menthos For Menthos Visitina de Recentrice Primary III. III. N., Other (specify) Primary III. III. N., Other (specify) Primary III. III. N., Other (specify) Disposition (specify) Visitina de Recentrice Primary III. III. N., Other (specify) Primary III. III. N., Other<	Si to kuranisty accivitatione are aujeratio change. Eurobez teo bih accordation in the State of charal telefort access for angles hand invites a the film interactione, if of instantiation considerations are chan	Mutation places the energy chartex being analyzed, the ment to stare, return the sign	this of memory attraction must	ensiyin 6. acc to shipped by shock altosing	to add complexity of the formula	Test Profession	doormet table 2018	Ratefold after ter former and tool be provided. Any changes (c.	er chain-d-oueloofy. If the lab	Antiary doce not currently Porocant to currents
o Recreased: I, II, III, N, Other (soundy) Primery Deliverable Mank: 2 Speciel Instruction: Clayson Deliverable Marker Sor Supergistrate Divide Sorting Deliver Date: 1 Time: Deliverable Marker Sorting Instruction: Deliverable Sorting Deliverable Sorting Deliver Date: 1 Time: Marker Sorting Networks Sorting Instruction: Deliverable Sorting Deliverable Sorting Deliver Date: 1 Time: Deliverable Sorting III Muthing A. Brancher Sorting Deliverable Sorting Deliverable Sorting Deliverable Sorting Deliverable Sorting III Muthing A. Deliverable Sorting South Sorting Deliverable Sorti	e Recuescial I, III, IV, Other (specify) Primery Deliverable Mank: 2 Specific Instructions/OC Requirements: Discoded By Lab Aceive Sor Solvery Backet Instructions/OC Requirements: Delivery Delivery IIIma: Delivery IIIma: Marvet Strement: Description of Strement: Descrip	sible Hezard Identification britmed					Sample Di	sposel (A fee may be	assessed if semples are re	Mained fonger then 1 m	month)
Representation Date: This: This: Marrier of Strands Representation December 1 December 1 December 1 Representation December 1 December 1 December 1 Stable Inter: December 1 December 1 December 1	augmentioned by Double Date: The manual environmentation of Streams. International and Streams. International Compares: Date:	verable Requested: I, II, III, N, Other (spearly)	Primary DePred	Bble Kank:	-		Spacial he	tra To Clent Tructions/OC Regulation	Disposed By Leb	Archive For	Months
CODUCE DEPENDENT 1700001 Control Dependent 1700001 Control DUMENTIAN CONTRA	COLOURAGE Description Description Description Description 31 Description Description Description Description 35 A No Description Description Description	ty for Reinwuisted by		Date:		F	Ha:		Manner of		
Bate Trace Contrary Inscrive United by: Bate The Bate Trace Bate Terrected by: Bate The Bate Trace Contrary State	Date Tries Contrary Teached by Bast No.: Date Tries Contrary Teached by Career Temperature Price Contrary Career Temperature Prices	ward for and	17250	5	170	August a	In the second	A	Cuterin	ohol le	EmBu V
Cuttody Seal No.	Outfoldy Seal No.: Caref Temperature) ¹ C and Objer Remores:		DateTime			onparty	Received	1 kA	DanTine	C	juntany.
							County 1	internation "Cand Other	Namorks;		

Page 97 of 102

6/15/2021

	1	inchus Feet below grade		2 15 LALS Comments	No odar/Shen	11 H	-						ــــــــــــــــــــــــــــــــــــــ	Clearing promets (B. Alechinty, Turkeler) SPASSE C. Judmes)	
		150	Julle	4.0 Color Cader	Clerky	-		-	+	-		-	⇒		
ET.	21	a Cillo w	Dex Nor	Static water Level	106.05	106.05	106.05	106.05	104.5	106.5	R .5	106.5	106.5	3	
k ta shej	5/18/21	-0	Low Flow Purging Devices Sampling Devices Purup Intake (depth below TOC):	olume: Flow Rate (mbmin)	300	300	300	300	300	300	300	300	30	s, Derchlande	
Watermark water sampling dat	Date:	Well Diameter (d) = Screen Depth Sautyka(s):	Low Flow Purging Device Sampling Device Pump Intake (dep	Actual Purge Volumo: (mV) (± 10) (11	1463	148.0	153.2	1:22.1	160.4	162.1	164.3	164.4	164.5	EDB CEPTOSING	
atern			2 27.3 Litus	راتین (الاترا) (۲۵۱)	10,66	SLIDI	to.66	[0.53	10.48	10.37	10.33	10.34	70.34	Naci, ED	
Watermark Sroundwater sampling data sheet			9 C L 7	Turbidity (NTDS) (HI38/17-1)	1.26	1.04	0:88	0.31	92.0	12.0	0.19	L1.0	0.16	Sample Fac	
GRO	U	# #		pecific aloctance ibos(em) L.3%)	4.53	64.7	64.9	65.4	2.29	C4.9	64.9	د5.1	65.1	Collect Sa	3
	1	150 150	Stens Water Lovel (II)	well volume: S (un (un) (un) (un) (un)	(.03	6.04	6.00	5.97	5.97	5.97	5.96	5.96	5.96	Rever Stabilization,	
Well I.D.: C1 -5 Pump Start 142 C Sample Time: 1510		Static Water Level (WL) (from 1.0.C.) - Well Depth (from 1.0.C) -	in Woll (T): State We	Temp. (°C)	10.9	10.6	11.0	11.1	011	10.9	10.9	10.9	10.9	Reut	
N T N	Depth to NAPL -	Static Water Level (WL) (ti Well Depth (from T.O.C) =	Height of Water in Well (T): T - depth (ft) T - JSO	· (1	1425	1130	1435	1440	1445	14 50	1455	1500	1505		Ĩ

12° -	1	sinches - Peet factors grade 9	Fred Fred Fred Fred Fred Fred Fred Fred			No adar Shan	7 4	- 1	1, 1,	F 4	а 4	2 7		н ч			
		M. Micha	Velicity alle Rup	1.3 Gallours Calori Clarity		Clevr	5 4	:	2 4	x 3	• •	:	= \$	- - -			
E	17	210 Blowner	Ver Ner	Startin Nauter Level		106.06		r \$	2 11	а 1		4	¥ ¥	r ;	1		
< TA SHEE	Spale	= (þ	T or Flow Purging Devine: Stampling Device: Armen Euder (denth below TOC): Armer Volumes Volume:	Flow Rate (nalimin)		80	100	11 11	: 1	120	11 H	* *					
Watermark water sampling dat	Date:	Well Dinester (d) = Screen Depth Sampler(s)) ow Flow Purging Devine: Stangling Device: Pump Intake (depth h Actual Pures Volumes	080 (Vm) (81±)	12 Se dechar	234.0	232.6	221.4	219.2	0.116	213.9	212.8	212.1	211.7	, Explosives	(utelity	
atern		i. ĝ	Lit.5	D.O. (mg/l) (±10%)	5 m	000	6.8.2	8.90	9.23	4.45	5.85	10.06	10.12	10.16	Petchinke	Alucharty 1	
Watermark Groundwater sampling data sheet			# 128 * 128 * 631641045	NIU NIU UNU	CPM2 13 Sec	0,62	C'HS	010	0.94	010	C.64	0.53	0.60	0.58	VOL EDS.	Conductioner 1	Ì
GRO	æ	10, 06 n 2.50 n	0 Well Volumee ·	ipectific aductance nhuseicm) (=.3%)	110 85	65.1	65.6	e.23	65.1	65.0	64.9	(65.0	65.0	65,1	ed Sample Fr	PH, Specific C	
	,		e Water I evel (ff) 106, OG Well v	(NS) मर्व	Co. And 24 C	5.91	5.73	5.91	6.02	6.12	6.13	6a./H	6.14	6.16	Statilization, Collect		
Pump Sunt 1035	-11	Slatic Water Level (WL), (from T.O.C.) – Well Depth (from T.O.C) –	Hoight of Water in Well (T) T = dsyth (h) - Statis Water Lovel (ft) T = 143, 94 h T = 143, 94	Termp (°C) (± 3%)	Stat Rung	1.51	10.0	9.8	9,8	47	L.P.	4.7	۴.۲	٩.۴	Reach State		
	- L'EAN of theory	Static Water Well Depth (Height of W2 T = dayt T = 1 T = 1	Ш. Д	5501	loto	1045	1050	1055	1100	lics	110	lus	110	ĺ		

1

State Water Level (W1) (firm TO.C)- $103,20$ n VGI Diameter (h)- $32,0$ n VGI Diameter (h)- $32,0$ n VGI Diameter (h)- $32,0$ n $33,0$ n VGI Diameter (h)- $32,0$ n $33,0$ $32,0$ n $33,0$ n $33,0$ $34,0$
$z + L_{c} L_{c}$
(a) Voltance: χ
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
0.66 10.11 138.3 450 0.34 10.15 141.1 450 0.32 11.47 149.3 ** " 0.13 11.47 149.3 * " 0.13 11.42 155.5 * " 0.14 11.10 157.5 * "
0.34 10.15 141.1 450 0.26 11.45 146.7 11.4 0.23 11.47 149.3 11.4 0.13 11.42 155.5 11.4 0.16 11.10 157.5 1
0.26 11.45 145.7 *** ** 0.23 11.47 149.3 *** ** ** 0.14 11.42 155.5 *** ** ** ** 0.16 11.10 157.5 *** ** ** **
0.13 11.47 149.3 *** ** 0.14 11.42 155.5 * ** **
<u>0.11 11.42 1555 * * * * * * * * * * * * * * * * * </u>
0.16 11.10 157.5 - + -
57.8 0.15 11.24 157.3
S 0.18 11.30
<u>57,7</u> 0,16 11.33 158.4 ""
Collect Sweph for the Following andress
Specific Conductures Twoididy, Alkelicity

Final Annual State of the Reservation Report for Training Year 2021

Watermark Groundwater sampling data sheet	5-19-21	(i) - 2,5 ⁴ inches 10 10 230 Fox Inches	Tare Plane Yes of Plane A studded Burging Device Control of the A studded Burging Device (depth below TOC): 2544 (Guillines) Lifered	a Kare Starte Color: 2.1.4	40 103,1	Courses abuless										T T T
Watermark	Date	Well Diameter (d) - Sereen Deyth Sampler(s):	Law Flow Furging Device: Sumpling Device Pump Intake (depth he Actual Purge Volume:	0RP (mV) (±10)		7922	1:322	1,715	211.9	2112	213.5	2020	27952	P.022	214.1	ZCH'S
ateri			***	D:O. (mg·l) (± 10%)		221	B:48	17.7	11.8	3.47	411	9770	9.5%	4.57	9,72	giles-
M MUMAT			30 Eallars 114 Liters	Imbathy (NTDs) (±10% (Te1)		50'0-	0,14	010	6.43	0.94	50	10,00	120	0,52	c.37	0.B
30 7 0	đ	1031 1 2350 4	ti Well Volume:	Specific Conductance (umbuckicm) (= 2%)		1/8/	74,8	72,3	2	Ciela	62:3	45.0	1100	66.7	66,92	67.0
P-CSM			un Level (ft) <u> \$_1</u> Well V	(T0=) (0S)Hq		85	6.47	6,39	04.0)	le, 32	10,25	<u>ورام</u>	2180	5.95	Greef	6,0S
Site LD.: _ <u>[A.C.]. Well LD.: _C-2_0 - CS_19</u> 2/ Pump Start Sumple Time:S)	Sturin Water I avel (WL). (from E.O.C.) – Well Depth (from 1.0.C.) –	Height of Water in Well (T): $T = \frac{dyth(0)}{2\pi C_{2}} - \frac{Starte Water Level (R)}{103 A} \frac{103 A}{9}$ $T = \frac{2\pi C_{2}}{12} \frac{103 A}{4} \frac{103 A}{10}$	Tenys (*C) <u>i= 3%</u>)	huns start	11.3	-	11.4	->	10.9	10,8	9.6	9.1,	2.4	a,5	->
a \$ 28	Depth to NAPL-	Statin Water Level ('W.L). (<u>1</u> Well Depti: (from 1.0.C) =	Höght of Water in T = depth (f) T = T = T = T = T = T = T = T =	, E	01-10	c745	0320	1995	0800	0002	0150	5180	2000	2630	0835	0480

	<u>*</u>	
		Test helm made
		Construction of the second of
1	Watermark Groundwater sampling data sheet	Iter S-13-21 Well Diameter (J)- Screen Depth Samen Depth Samen Depth Samen Depth Samen Depth Samen Depth Tow Hate Control Device Saughing Devi
	Watermark	Ibre 5 Well Diameter (J)- Same bench Same Depth Same bench Same Dignes Descention Same Dignes Descention Same Dignes Descention Same Dignes Descention Darrent Dignes Descention
	ater	(automs) (auto
		~ 49 ~ 73 ~ 73 ~ 73 ~ 73 ~ 73 ~ 73 ~ 73 ~ 73
	GRO	IC3.60 n 103.60 n Wall Vubmere Spatiation Wall Vubmere Spatiation Spatiation
	N S OD	
	Stre LD.: LL. R. W Well LD.: L255 Pump Start 1250 Sample Time: -13472	Derif to NAPL-
~		Depth to NAUL- Static Water Level (W1), (f) Well Depth (from LLOLC) - Well Depth (from LLOLC) - The <

GROUNDWATER SAMPLING DATA SIFET at 0.0 http://withoutage.com/or colspan="2">Colopia in the colspan="2">Colspan="2" Colspan="2" Colspan="2" Colspan="2" Colspan="2" Colspan="2" Colspan="2" Colspan="2" Colspan="2" Colspan="2" Colspan="2"				Ň	ater	Watermark	<u>×</u>									
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	4		GROI	TEMONO	ER SAMI	PLING D.	ATA SHEI 5/20	ET /±./	17							
3 0.0 $3 0.0$ <	Static Water Level (WL) (from T.O.C.) -	103	34 n			Well Diamoter	- (þ)	- R.K.		inches						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1	310	*	- 20 - 20 -		screen Luepun Sampler(s):			10.00	For Dulow grade						
(a) Trubular z 449 9-641-5 Areain Proge Volume: z 30 (a) 400 40 (a) Trubules Trubules Trubules D.0. ORE Enverse Enverse<	Startic Water Low 103.34	uq (iji)		*	4		e: loe: flench helow TOC:		1 BLAL R							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	Well	folume: Spacific	44	5		olume:	د ره	Doc 115	(Cinthroot Lieles						
- 115 Psi, Cema. 17 str. Fill, 13 str. dirtunge 6.02. 57.06 1.05 10.41 246.6 23.0 10334 Clause 7.13 57.13 3.55 10.41 246.6 23.0 10334 Clause 7.15 57.13 3.55 10.76 22.3.3 6.0 10334 Clause 6.02 57.1 3.16 15.84 221.4 6.0 10334 11 6.47 57.13 5.61 14.84 273.2 6.0 11 11 6.41 56.1 4.04 14.80 273.2 6.0 11 11 6.41 57.3 2.81 13.00 272.4 6.0 11 11 6.43 55.3 2.81 13.00 272.4 6.0 11 11 6.50 54.2 2.82 13.40 216.3 6.0 11 11 6.50 54.2 2.82 13.40 216.3 6.0 11 11 6.50 54.2 2.83 13.40 216.3 6.0 11 11 6.50 54.2 2.86 13.14 6.0 11 11 6.5	Teurp. (°C) p.H (= 3%) (.1.	(I.0.1) (0.1)	Confuctance (umhos/cm) (± 3%)	Turbidicy (XTUs) (ATUs)	D.O. (mg/l) (±10%)	900 (EV)	Flow Rate (mizim)			Comments						
6.02. 57.6 1.05 10.41 246.6 220 10534 Clear Clear 7.13 57.13 3.55 10.76 222.3 60 10334 Clear 1.15 57.11 3.16 15.84 221.4 60 11 11 6.60 57.11 57.1 3.16 15.84 221.4 60 11 11 6.41 56.1 4.04 14.80 273.1 60 11	1 1	5 951	CPM3	·												
7.13 5.13 3.55 10.76 222.3 60 10334 111 6.60 57.1 3.16 15.84 221.4 60 111 111 6.41 57.1 5.61 4.04 14.84 2721.2 60 111 111 6.41 56.1 4.04 14.80 2721.4 60 111 111 6.41 55.8 2.81 13.00 2721.4 60 111 111 6.50 55.3 2.81 13.00 2721.4 60 111 111 6.50 55.3 2.81 13.00 2721.4 60 111 111 6.50 55.3 2.81 13.00 2721.4 60 111 111 6.50 55.3 2.81 13.00 2721.4 60 111 111 6.50 54.2 2.82 13.40 216.3 60 111 111 6.50 54.2 2.82 13.40 216.3 60 111 111 6.50 54.2 2.76 13.50 216.3 60 111 111 6.50 54.2 2.84 13.60 216.3 60 111 111 6.50 54.2 2.76 13.40 216.3 60 111 111 6.50 55.3 55.3 2.76 13.50 216.3 111.2 111.2 6.50 54.2 55.3 2.76 13.50 216.3 1	6.0	100	57.6	1.05	10.41	246.6	220	103.34	Clear	NO Ola Shan						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1.1	5	51.3	3.55	10.76	222.3	60	103.34	: •							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6.1	60	57.1	316	15.84	221.4	60									
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	و	F	57.3	5.61	14.84	2.22.2	60									
(.49 55.8 2.39 13.00 222.4 $(.0$ $$	Ę.	15	56.1	4.04	14.80	224.8	60		2.							
6.50 55.3 2.81 13.67 2.18.0 60 11.1 <t< td=""><td>ف</td><td>49</td><td>55,8</td><td>2.39</td><td>13,00</td><td>222.4</td><td>60</td><td>- A - A</td><td>, 3</td><td></td></t<>	ف	49	55,8	2.39	13,00	222.4	60	- A - A	, 3							
6.5a 54.5 2.8c 13.90 217.4 60 11 11 11 6.50 54.2 2.83 13.40 216.3 60 11		Ġ,	55.3	2.81	13.67	218.0	60	1.36	11 II	2.2						
6.50 54.2 2.83 13.40 216.3 60 11 1 6.50 55.3 2.76 13.36 214.2 60 11 1 Stast. zulsen, Gellict Sample Fin vittes, Erre explinence, Perculante 13.34 214.2 60 11 11 Stast. zulsen, Gellict Sample Fin vittes, Erre explinence, Perculante 11 11 11 11	10.6 6.5	23	54.5	2.36	13,50	11.4	60	SC 1	:							
6.50 55.7 2.76 13.36 214.2 60	tork les	50	54.2	2.83	13.40	216.3	60	1.00								
Collect Screpte For Utry, Erro, er.	10.7 C.5	29	55.3	2.76	13.36	214.2	60		; ; ;	1.01						
Spucke	Stast, ration		3		isus, Pauli	nte										
				Spacks	Subschuz, A	Itelinshy Tay	لانطرالهم									
		2.00 to 2.50 Freet below grads	Dedreched Bladde Pung Dedreched Bladde Pung 22 12 (cuatimes) Liburs	2. 3.0 5 4 linn 5 State 2. Job water Calori Level Clarity Comments	132,05 Clear No ober Sheen		: 	ב יייי ב ייייי		; 4 ; 3 ; 7		x = = = = = = = = = = = = = = = = = = =		1		
---	-----------------	---	--	---	----------------------------	-------	----------------------	---------------------------	-------	----------------------	-------	---	----------------	--------------	------------	---
Watermark Groundwater sampling data sheet	5/19/21	11	llow IOC):	Flore Rate (milorin)	38	300				- - 	- 					
Watermark	Defic	Well Diamator (d) = Screen Depth Samplor(s);	Luw klow Prugiog Device: Suarphing Device: Pramp Intake (derth h Actual Pringe Volume	ORP (mV) (mV)	1555	151.0	160.5	151.4	158.3	156.4	156.0	155.7	Chale 25			
ateri		11 20	= 79 Lines 2 21 Sallons	D.O. (mg/) (+3026)	8.84	8.61	9.30	9.26	9.21	٩. ۱۹	9,15	9.14	to llama		-	
			12 2	Turbidity (NTUS) LEDON (COL	1.31	0.44	0.36	0:30	0.27	0.23	21.0	0, 14	the the		Alkalathy	
GROU	ų	2 5% + +	Volume:	SU) Specific. Conducting SU) (umbasien) (iii) (= 3%) ')	200 11	55.6	54'H	54.1	54.3	53.0	53.6	53.4	Cottect Surple	EDS Reclarke	Tursdity	
	ţ	0- 132 05	fter Level (ft) 132.05	(ns) मर्च	6.06	613	6.19	6.20	6.20	6.20	6.20	6.20	Stabliziter	Explores ED	7	ĺ
Well LD.; <u>C4-5</u> Perrp Start: 0125 Sumple Time: <u>1010</u>	ß,	Static Water Lovel (W1.) (from I.O.C.)- Well Depth (from T.O.C.) =	Hacglu of Water in Well (T): $T = \frac{1}{4\pi i \hbar} \frac{1}{4\pi} \frac{1}{1} \frac{1}{2} \frac{1}{200} \frac{1}{6} \frac{1}{10} \frac{1}{10} \frac{1}{200} \frac{1}{10} $	l Ba	101	101	10.8	10.8	10,9	10.9	11.0	1.11	Reached	VOLS END	PH, Spurie	
₩ ² 2	Depth to NAPL =	Static Water Lovel (W1.) (fb Well Depth (from T.O.C) =	Height of Water in ⁹ T = depth (1) T = 250 f = 777.15	I į	CABO	0935	0440	0145	0450	0455	0001	1005				

Page 187

70 63		inches 7 Yext bolow erado	8 10	<u>et</u> 		Jalit 2005 Comments		cless clotess	•						+			
EI	5-19-21	2,4 4 asso	and	The Barty Lake	9.2445	State 7 5 4 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 -	131.85	1 clear	-		-	_			 			Volume in gallous float for common anomitoring well sizes: 1-ineb = 0.04%, 2-ineh = 0.163, 3-ineh = 0.367, 4-ineh = 0.652, 6-ineh = 1.458
Watermark Groundwater sampling data sheet		Well Diameter (d) = Screen Depth	ur(s):	Low Flow Burging Device Sampling Device Puma Intake (denth below TOC):	Autual Purge Volumer	P 7) Flow Bate 0) (arbain)	230	S	+	2.5	200.2	<u>H</u>	<u></u>	k l	Ngd, 5 L		.	-0.163, 3-imeh - 0.367, 4
Watermark	Date:	Well I Screen	Sampler(s):		failons) Actual	D.O. ORP (皿g.) (mV) (主印)		5,44 230,5	517 22L4		5.80 20	K-168 197.4		5,98 190,	(a.04 We	- - -		$cs: 1-incl_{2} = 0.041, 2-inch$
	D	-		2 211 Liturs	2 56	Turhidity (NTUs) (SAIC21)		C.24	1,92	1.45	1.51	7,32	3,01	ः ः ः ः	3,41			tion monitoring well siz
GRC		131,855	320.6		Well Volume: Smeilis	Candocrance (analues/enc) (#:3%)		67.3	67.0	64.0	70.1	20'3	202	- F	3 71.5			in gallous/foct for count
Well LD.: C:4 D Pung Start. C'125 Sangle Time: DOLO	3	(3701	Ì	ie Witter Level (ft) 131. \$5	We	(10日) (11)日 (11)	4	5,42	See	6.28	6,63	Leves -	Cored	- (e,72	5.7 10-1-			Volume
Well LD.: C. Puny Stat. C	iAPL =	Static Warer Level (WL) (from T.0.0.) –	Well Digth (lion T.O.C) -	8 9	4 517 JAZ	Tanga. (°C) (± 3%)	Euro Star	9.6	10 20	5	3	_			A. Collee			
	Depth to NAPL =	Static War	Well Depth	Height of V T - de	Ц Ц	Tinc	0925	0630	Seno	QF60	Sigo	0980	Sess	88	1016			

		inches	Feet helow grade	Pert Reat		NO Oder/Shar	· ·	2 4	9 2			1. N	4 H		
		5	120	Person in the Purp	Color Color Chaire	Columbar	7 3	4	2 2	2	z. s	-			
F			150 m 18	Ves Non	Santio Vantor Covol	1 35.83	4 5	۰. ۱	1 N	:				5	
VVALETMATK GROUNDWATER SAMPLING DATA SHEET	Stale	r (d)		Law Flew Daging Device: Sampling Device: Purny Intelse (depth below TOC): Actual Dans Volume:	Plow Rate (nelonin)	300	нч	4 4	- -	4 14	2 2	4	۲۰ ۲۰	Hertwing Turndin	
TAL	Date:	Well Diameter (d) -	Sereeu Dopth Sampler(s):	Law Flew Purging Device: Sampling Device: Pump Intake (depth be Actual Purey Volumer	088 19 19 19 19 19 19 19 19 19 19 19 19 19	1354	140.6	I42.5	144.6	147.6	1:051	151.9	152.5	2 Pealer	
VVALETIMATK WATER SAMPLING DAT				Church of the second se	D.0.0 (fam) (<u>10%)</u>	10.03	5.86	10.00	9.70	1.87	9.83	9.84	87.8	Speciel Charl	
VVS				4.76 2 2.	Turbidity (NTUs) (LIOS E-L)	1.12	0.83	D.11	0.75	0.70	47.0	0.43	0.60	.Hg	
GRO	u	3 h	u	1,1 1,1	RI) (umhrecm) (umhrecm) (1) (= 3%)	56.3	58.9	6.02	61.3	61.6	62.1	6.2.2	62.1	ver suppres trained	
i L	١	3= 135.83	130	Static Water Level (ft) 135,833 Wall 7	H(SII) (<u>10</u>)	ć,00	6.02	6.03	HO.J	6.04	40.2	6.04	6.04	Stablization, Coll	
Pump Startt <u>0 120</u> Sample Time: <u>0205</u>	5	Static Watter Lovel (WL) (from T.O.C.) =	om T.O.C) -	Најсна (Water in Well (Т): T - digda (1) - Static Wa T - 1 2 - 13 - 44 (17 - 13	l P	10,3	10,2	10.1	10.0	10.0	10,01	0'01	10.1	Rent Stis	
	Depth to NAPL -	Static Watter L	Well Depth (from T.O.C) -	Height of Wate I – depUt T – 1 1 T – 4	l j	0115	02130	25.10	OHLO	6745	0510	5510	0300		

		¢
9	Trees helow grude	
		- 1.468
- E	The real of the re	nch - 0.682, 6-incl
<pre></pre>	Date: S-ZO - Z/ Well Diametra: (d) - Surren Deptis Surren Deptis Surren Deptis Tow Tow Tow Tow Tow Nump Insuke (direch belaw TOC): Surren Prese Actual Funge Volume: Strint March Prese Carlo (direch belaw TOC): Strint Carlo (direch belaw TOC): Strint Carlo (direch	inch - 0.367,44 in
Watermark	Date: Weil Diameter $(d) =$ Serven Depth Serven Depth Serven Depth Tow Ploy Properties: Sampling Device: Nump Intake (depth by Atual Purge Visiume: ORP (Intro) (In	2-inch-0163, 5-inch-
atern	1.40 1	(140) - 11:00
Watermark Groundwater same Ling data sheet	には、 で、 で、 で、 で、 で、 で、 で、 で、 で、 で	
GROI		Voltane in gallons foot for common incontaining well sizes: 1-insh=0.041, 2-inch=0.103, 3-inch=0.367, 4-inch=0.682, 6-inch=1.468
3		Volume in gal
Sire I.D.: U. & C. P. L.	Deptho NAPL- State Water Level (WL) (frem T.O.C.) - State Water Level (WL) (frem T.O.C.) - Well Depth (from T.O.C.) - Well Depth (from T.O.C.) - Headed of Water Level (WL) (from T.O.C.) - Total (WL) (from T.O.C.) - Headed of Water Level (ML) (from T.O.C.) - Total (WL) (from T.O.C.) - Total (WL) (from T.O.C.) - Total (ML) (from T.O.C	
5 4 85	Depth to NAPL- Static Water Loved (WL) (fr Well Depth (from T.O.C) - Heught of Water Lawell (WL) (fr Well Depth (from T.O.C) - T Apple (from T.O.C) - T C.T.B. C.	

Page 190

i.		inches Feet belaw grado	a	Freet (Galkers)	Catantosate	No odur Shear	м И	N 10		• •	N 7	•	4 x						8
,		183	V=KNOTel Bladde Purp	2 14 64-1	3.7 Jullens Coline Clarity	(ol + (us)	۲ د		1 1	*	s \$	*	x 5				ĺ		4-1468
E		ы 151 в	V=X Non	12	Static tt 3 weitr Level	142.56	11 11	2 2	3	:	- -	-	* *						ads — 0.450 6 Ene
< TA SHEE	5/19/21	- 6	1	Pump Intake (depth below TOC): Actual Purge Volume:	Flow Rate (<u>mt/min)</u>	352	ν ĉι .		14 - 14 1	5 5		1	: :						1 in 10 in
Watermark water sampling dat	Dute	Well Diameter (d) – Screen Dignh	aampungu Low Flow Pamping Device: Sampling Device:	Pump Intake (depth b Actual Purge Volume:	420 (回 (日 (日 (日 (日)	185.2	185.1	1853	185.4	184.6	183.4	182.7	183.6	3 8			ĺ		0 070 0 - 1-1-1 4
atern		20	32 (C		D.O. (mg/) (10%)	10.24	10.09	10.04	9,98	9.94	10,06	10,14	10.01	1		ĺ			
Watermark Groundwater sampling data sheet			225 Linu	2 6,5 Julian	Turbidity (NTUs) (±10% (r = 1)	1.21	0.91	0.78	0.64	e.50	6.47	0.44	0.36	or the gollowing		verlanty			
GRO	ų	193			Specific Carductance (mnhos/em) (±3%)	(e.e.9	78.6	77.8	G.TT	76.7	76.4	75.3	75.5	Collect Sample For the	Perchanter.	Conductioner, Twisday, Alvalanty		8	Verheine in anticondition for accordance and classes i just = 0.043. A just = 0.173. A inde = 0.253. A inde = 1.459
	1		er Level (ft)	SG Well Volume	л ^Н (SU) (4.6.1)	5.38	5.98	5,99	5.99	5.99	5.49	5.98	5.99	Sustant Col	Exphysics, R	Conductories	-		Webshine in o
Well I.D.: C. 65- Pranp State: 1365 Sample Time: 1350		Static Water Level (WI) (film I.O.C.) - Mott Deals (fear T.O.C	Height of Water in Well (1). I = daptb_ft) Static Water Level (ft)	40.44 0 112	Tbrp. (°C) (± 3%)	10.8	10.8	10,6	10.4	10.4	lo.4	10.5	10.6	Renhal Shis	LOU, EDS, 6				
5 2 2	Depth to NAPL =	Sladic Water Level (WT.) (û 	Height of Water T = daph (1-1 1-1	Time	1310	1315	1320	1325	1330	1335	1340	1345						

	inclose Foot below grade	Ген Тен (байты) 2,2,4,5,5			adarkss	_		-				->	đ	8 <u>.</u>	200 20
. 5	Z.4 2.4 180	"Betweeled Blidder	2 O.G Saftons Static water Colour Level Clatter	H2,56e	Clerkes.	-+ -+	, - - - -	╡ ┥ ┥		•					$ Volume in gallens/iset for exerned monitoring well sizes: 1-ingh = 0.041, 2-ingh = 0.163, 3-ingh = 0.367, 4-inch = 0.652, 6-ingh = 1.468 \\ Volume in gallens/iset for exerned monitoring well sizes: 1-ingh = 0.041, 2-ingh = 0.163, 3-ingh = 0.367, 4-inch = 0.652, 6-ingh = 1.468 \\ Volume in gallens/iset for exerned monitoring well sizes: 1-ingh = 0.041, 2-ingh = 0.163, 3-ingh = 0.367, 4-inch = 0.652, 6-ingh = 1.468 \\ Volume in gallens/iset for exerned monitoring well sizes: 1-ingh = 0.041, 2-ingh = 0.163, 3-ingh = 0.367, 4-inch = 0.652, 6-ingh = 1.468 \\ Volume in gallens/iset for exerned monitoring well sizes: 1-ingh = 0.041, 2-ingh = 0.163, 3-ingh = 0.367, 4-inch = 0.652, 6-ingh = 1.468 \\ Volume in gallens/iset for exerned monitoring well sizes: 1-ingh = 0.041, 2-ingh = 0.163, 3-ingh = 0.367, 4-ingh = 0.055, 6-ingh = 0.048 \\ Volume in gallens/iset for exerned monitoring well sizes: 1-ingh = 0.041, 2-ingh = 0.163, 3-ingh = 0.367, 4-ingh = 0.048 \\ Volume in gallens/iset for exerned monitoring well sizes: 1-ingh = 0.041, 2-ingh = 0.163, 3-ingh = 0.367, 4-ingh = 0.048 \\ Volume in gallens/iset for exerned monitoring well sizes: 1-ingh = 0.041, 2-ingh = 0.163, 3-ingh = 0.367, 4-ingh = 0.367, 6-ingh = 0.367 \\ Volume in gallens/iset for exerned monitoring well sizes: 1-ingh = 0.041, 2-ingh = 0.163, 3-ingh = 0.367, 4-ingh = 0.367 \\ Volume in gallens/iset for exerned monitoring well sizes: 1-ingh = 0.367, 5-ingh = 0.367 \\ Volume in gallens/iset for exerned monitoring well sizes: 1-ingh = 0.367, 5-ingh = 0.367 \\ Volume in gallens/iset for exerned monitoring well sizes: 1-ingh = 0.367, 5-ingh = 0.367 \\ Volume in gallens/iset for exerned monitoring well sizes: 1-ingh = 0.367, 5-ingh = 0.367 \\ Volume in gallens/iset for exerned monitoring well sizes: 1-ingh = 0.367 \\ Volume in gallens/iset for exerned monitoring well sizes: 1-ingh = 0.367 \\ Volume in gallens/iset for exerned monitoring well sizes: 1-ingh = 0.367 \\ Volume in gallens/iset for exerned monitoring well sizes: 1-ingh = 0.367 \\ Volume in gallens/iset for exerned mo$
Watermark Groundwater sampling data sheet	<u>S-19-21</u>	Low Flow Punzing Devize Sampling Devize Pump Inske (depth below 100)): Actual Purge Velamer	Flow Rate (mlimita)		2	+	+	$\left \right $		-	- 19				3, 3-inch — 0.367, 4-й
Watermark	Date: 3	0 0 0-4150-050-000	are 1990		205.6	1,	156.		188.7	0.88	1866	186-1			341, 2-inch — 0.163, 3-inch — 0
atern ER SAMPI	28 (Litus (gathers)	D.O. (mg/) (±10%)		0.01	N 825	11.35 N 37	0.52	d. 47	9,72	0010	9.07			sizes: L-inch – 0.
		2 625	Turhidity (NTUs) (1285.1251)		(,93	1.16	200	1.70	0.91	0,79	0.8	30			ı momitming well
GRO	n 1 <u>42, 570</u> n 280 n	Vel Volume .	Specific Conductance (±3%)		۲), ۲	62.8	215	Sle. S	6729	\$1,1	51.3	507			gallenstiset for correct
		Red evel (II)	pH (SU) 注意11		(e.bb	77.9	6,21	6.03	(e.03	6,00	A SON	Sigle	dem fies		Volume in ₂
Well LD LAC Ver A-AND Well LD C-CCD Pump Statt: 13-05 Saughe Time 1400	Depth to NAPL	Height of Water in Well (7): T - depth (0) T - 2520 T - 152744 n T - 152744 n	Temp. (°C) (≐ 1%)	Fump ship	19.7	19,4	18/3	17.3	1.11	10,8	10.G	14.3	x collect &		
17 A 18	Depth to NAPL - Static Water Level (WL) (fi Well Depth (Loar T.O.C) -	Heighrof Watari T - Jepth (9) T - <u>15</u> T - <u>15</u>	· Time	1305	1310	SIGN	35	1330	1335	07101	Ster	1355	1001		

65		incles Feer below grade	f Foot (Gaillinne) in than th	Comments	No edor/Shen		10 M		11 VI	н н	۰۰ ۲۰ ۲	In 11				
		239	215	Colori Colori Vinto	CHerry Clear	. 4	1 11	н н	9 2	3	11 11	* *				
L	-	R. Gennyu	DEALIDER BILLA	Startic water Levei Levei	15.12	4 5	4 4	: 3	h h	Y L	n n	1, 12				
< TA SHEF	slight	= (j)	Low Trow Purging Devices Sampling Devices Prung Intako (depiti below TOC): Actual Purge Volume:	Flow Rate (jul(jein)	8	11.11	11 11	11 11	7 7	n u	+ *	1, 1,				
VVALETMATK WATER SAMPLING DAT	Ditte: .	Well D'ameter (d) = Serees Depth Sampler(s):	Low Trow Purging Device: Sampling Device: Prang Intake (depth be Actual Purge Volume:	087 (mV) (± 10)	177.2	1 73, 4	168.8	161.9	154.5	151,3.	151.3	150.9	<u>8</u> .			
aleri Er sami			C. Cray	D.O. (Ingt) (2011)	8.69	1.10	9.35	10.00	10.16	10.23	10,20	10.16	Following analysis!			
VVALEYMATK GROUNDWATER SAMPLING DATA SHEET		3	=51 Limo	Turbidity (NTUS) (10%#351)	570	0.55	0.50	14.0	46.0	031	6.3H	0:30	ちち回		Alterity	
GROI	4	156.72 ±	t) Well Volume:	opeone Conductance (umbreaten) (±356)	54.3	¢1.0	64.4	64.8	65.1	65.3	45.5	655	Cattert Sample F	Perhanke.	Twostity,	
-	1		sensi Water Level (ft) - <u>156, 712</u> Well	pH (SU) (±0.1)	5.82	5.94	6.05	6.07	10.3	6.07	6.08	6.08	Stubitate, C	Englosmes,	Specke Conducture	1
Sample Time 1155	7- - T	Static Water Level (WL) (from 1.0.0.) – Well Depth (from T.0.0) =	Height of Water in Well (T): T - death (ff) - State Wa T - 233 - 15 T - 83. (f)	Temp. (°C) (±3%)	10.9	10.9	10.8	10.8	10.8	10.8	10:1	io.7	Recend Sta	VOC, EDB	PH, Specker	-
ii 21	Depth to NAPJ. –	Static Water I. Well Depth (fi	Height of Wei T - Repth T - Repth T - Repth T - Repth T - Repth Repth T - Repth Re	<u>الم</u>	1110	5111	0711	1125	0511	SEN	ામર	130				ľ

	2	inches Fect below grade	Free Contents	Commerts	- odates		*	-											
-		- Hriter	Water Badde	State 2 1.3 5.4 ms	156 83 ch-	1 weletas			-	+ -+	┆ ┥ ┥	┽ ┽	 	 			- - - - - - - - - - - - - - - - - - - -	2b - 15551, 6-inch - 1 468	*
Watermark	8-M-2	- (1) - (1)	Low Flow Purging Dovice: Ves Allo Sumpling Dovice: 71 Flump Intake (depth below TOC): 71 Actual Purge Volume: 2148 <u>L</u>	Flow Rate (tub/tub)		SS		20	70	0	4	+-	+			_		0, 3-inch 0.367, 4-inc	
S ermar	Date	Well Diameter (i) – Screen Depth Sampler(s)	Law Flow Furging Dovier Staupting Dovier Staupting Dovier Fuang Intsku (dapth bi Astaal Purge Vulume (gallong)			5	2241.4	1 2544	1 20.3			21000	-	5.	189.4		3 184.	L 0.041, 2-inch = 0.16	-
Watermark	VENTER	53	St.	Tuchidity D.O. (NTU8) (m2/D) (±10%.[f2]) (= 10%)	 	200 200		7.63 8131	851 9.74	. 1	2	7.463 8.63	1,10 8,60	 >+	Criske L		0.89 9.1	Pup O sizes: Linch	
	T T	\$ \$ 1	2 172 litus	Specific Conductance To (umbastem) (N (1.3%) (±10)		rel box	Ľ	(el.2 7	S	8	ń	275		2			4	6 volume in gulture feet for formun moving high est sizes: 1-inch 10.041, 2-inch -0.163, 3-inch -0.260, 4-inch - 1.653, 6-inch - 1468	
CT-D Przio	ġ	0= 15(e. \$3	vel) Volt	(10年) (10年)		the on	SX	6.15	1	(s.de	2:84		223	6,23	6.24	(e.25	6,26	le reduction in gallor	Anna Mit
Star 1.12. Luce Well 1.10.: C.7 - Perro Start. <u>1125</u> Sample Time <u>127</u>	Ę	State Water Level (WT.) (from T.O.C.) = 	Height of Water in Well (T): T = $\frac{depth (M)}{23} \frac{S}{S} = \frac{Static Water Level (h)}{126 + 1}$ T = $\frac{1780 M}{1}$ ft	Temp. (°C) (<u>க 1%</u>)	Remp Stort	* Mans the	Neo	15,4	13.1	12,7	12.21	12.1) ->	'Z'		>	てた	12,3	AMUN KINIK Kundis
₹ \$ £8	Depth to NAPL =	Static Water Level (WT) (fr Well Daph (from T.O.C) =	Height of Water T = 04 Water T = 1	Tin	Mos	MIN	SIT	Vac	1125	OSM .	SEI	OH!	NSCO -	1351	1200	1997	0421	12	. Greek

102nd Intelligence Wing Water Quality Report

2020 Annual Water Quality Report For Otis Air National Guard Base Joint Base Cape Cod, Massachusetts MassDEP PWS ID #4096001

To comply with State regulations, Otis Air National Guard Base, will be annually issuing a report describing the quality of your drinking water. The purpose of this report is to raise your understanding of drinking water and awareness of the need to protect our drinking water sources.

PUBLIC WATER SYSTEM (PWS) INFORMATION:

Address: Otis Air National Guard Base on Joint Base Cape Cod, Massachusetts Contact Person: Mr. Richard Sonza Telephone 4: (508) 968-4102

Water System Improvements.

Our water system is routinely inspected by the Massachusetts Department of Environmental Protection (MassDEP). MassDEP inspects our system for its technical, financial, and managerial capacity to provide safe drinking water to you. To ensure that we provide the highest quality of water available, your water system is operated by a Massachusetts certified operator who oversees the routine operations of our system. As part of our ongoing commitment to service, the MassDEP Drinking Water Program has determined that the public water supply system at Otis Air National Guard Base is compliant with all national Printary Drinking Water Standards and MassDEP Drinking Water Regulations.

Where Does My Drinking Water Come From?

Our drinking water supply is provided entirely by groundwater. J-Well (4096001-01G), which is located on Herbert Road, is our primary pumping station. We are also connected to the Upper Cape Regional Water Supply Cooperative. The Cooperative's water sources come from three wells located in the northeastern corner of Joint Base Cape Cod. On average, we provide up to 300,000 gallons of high-quality water every day. All of the Otis public water supply is drawn from the Sagamore Lens of the Cape Cod single-source aquifer. This lens runs from the Cape Cod Canal eastward into the town of Yarmouth. To learn more about our watershed on the Internet, go to the U.S. Environmental Protection Agency's (EPA) "How's My Waterway" website at the following link: https://www.cpa.gov/waterdata/hows-mv-waterway

DRINKING WATER SOURCE:

Source Name	MassDEP Source ID#	Source Type	Location of Source
J Well	4096001-01G	Groundwater	Herbert Road

Is My Water Treated?

Our water system makes every effort to provide you with safe and pure drinking water. To improve the quality of the water delivered to you, we treat the system with potassium carbonate, sodium fluoride, and sodium hypochlorite. The water in this geographic area is naturally acidic, with an average pH of 5.9 (7.0 is neutral). Acidic water can be harmful to the distribution system. Potassium carbonate is used to buffer the water to as close to a neutral pH as possible. At the request of the U.S. Coast Guard, which is the owner and operator of the family housing area, sodium fluoride is added to the water. This compound has proven effective in strengthening teeth.

Finally, sodium hypochlorite is used to disinfect the water supply by killing bacteria. The water quality of our system is constantly monitored by us and MassDEP to determine the effectiveness of existing water treatment and to determine if any additional treatment is required.

How Are These Sources Protected?

The Source Water Assessment and Protection (SWAP) Program, established under the federal Safe Drinking Water Act, requires every state to inventory land uses within the recharge areas of all public water supply sources; to assess the susceptibility of drinking water sources to contamination from these land uses; and to publicize the results to provide support for improved protection. MassDEP has prepared a SWAP Report for the water supply source(s) serving this water system. The SWAP Report assesses the susceptibility of public water supplies.

What is My System's Ranking?

A susceptibility ranking of HIGH was assigned to this system due to the absence hydrogeological barriers (i.e., clay) that can prevent contaminant migration.

Where Can I See The SWAP Report?

Information on obtaining the complete SWAP Report is available by contacting the Water Supply Superintendent at (508) 968–4102. To access the SWAP Report on the Internet, go to the Source Water Assessment & Protection (SWAP) Program Website at the following link: <u>https://www.mass.gov/service-details/the-source-water-assessment-protection-swap-program</u>

Members can help protect sources by:

- practicing good septic system maintenance
- · proper disposal of hazardous chemicals and materials
- · limiting pesticide and fertilizer use, etc.

SUBSTANCES FOUND IN TAP WATER:

Sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals, and in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

<u>Microbial contaminants</u> -such as viruses and hacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.

<u>Inorganic contaminants</u> -such as salts and metals, which can be naturally-occurring or result from urban stormwater runoff, industrial, or domestic wastewater discharges, oil and gas production, mining, and farming.

<u>Pesticides and herbicides</u> -which may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.

Organic chemical contaminants -including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, and septic systems.

<u>Radioactive contaminants</u> -which can be naturally occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, the Department of Environmental Protection (MassDEP) and U.S. Environmental Protection Agency (EPA) prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. The Food and Drug Administration (FDA) and Massachusetts Department of Public Health (DPH) regulations establish limits for contaminants in bottled water that must provide the same protection for public health.

All drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPA's Safe Drinking Water Hotline (800 426 4791).

Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and some infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/Centers for Disease Control and Prevention (CDC) guidelines on lowering the risk of infection by cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline (800-126-4791).

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Otis Air National Guard Base is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

IMPORTANT DEFINITIONS:

<u>Maximum Contaminant Level (MCL)</u> – The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

Maximum Contaminant Level Goal (MCLG) - The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

<u>Action Level (AL)</u> – The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.

90th Percentile - Out of every 10 homes sampled, 9 were at or below this level.

<u>Secondary Maximum Contaminant Level (SMCL)</u> – These standards are developed to protect the aesthetic qualities of drinking water and are not health based.

<u>Unregulated Contaminants</u> – Unregulated contaminants are those for which EPA has not established drinking water standards. The purpose of unregulated monitoring is to assist EPA in determining their occurrence in drinking water and whether future regulation is warranted.

<u>Massachusetts Office of Research and Standards Guideline (ORSG)</u> – This is the concentration of a chemical in drinking water, at or below which, adverse health effects are unlikely to occur after chronic (lifetime) exposure. If exceeded, it serves as an indicator of the potential need for further action.

<u>Treatment Technique (TT)</u> - A required process intended to reduce the level of a contaminant in drinking water.

Running Annual Average (RAA) - The average of four consecutive quarter of data.

<u>Maximum Residual Disinfectant Level (MRDL)</u> – The highest level of a disinfectant (chlorine, chloramines, chlorine dioxide) allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG) -- The level of a drinking water disinfectant (chlorine, chloramines, chlorine dioxide) below which there is no known expected risk to health. MRDLG's do not reflect the benefits of the use of disinfectants to control microbial contaminants.

Level 1 Assessment A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.

Level 2 Assessment – A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an *E. coli* MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.

UNITS OF MEASUREMENT:

= Million Fibers per Liter
= millimrems per year (a measure of radiation absorbed by the body)
= Not Applicable
= Not Detected
= picocuries per liter (a measure of radioactivity)
= parts per billion, or micrograms per liter (ug/L)
= parts per million, or milligrams per liter (mg/L)
= parts per trillion, or nanograms per liter (ng/L)

What Does This Data Represent?

The water quality information presented in the table is from the most recent round of testing done in accordance with the regulations. All data shown was collected during the last calendar year unless otherwise noted in the table.

Bacteria	MCL/TT	MCLG	Value	Date	Violation (Y/N)	Possible Source(s) of Contamination
Total Coliform Bacteria (TC)	0	0	Positive	8 Diec 2020	N	Human and animal fecal waste

Coliforms are bacteris that are naturally present in the environment and are used as an indicator that other, potentially harmful, waterborne pathogens may be present or that a potential pathway exists through which contamination may enter the drinking water distribution system. We found collibring indicating the need to loak for potential problems in water treatment or distribution. When this occurs, we are required to conduct actions to identify any problems that were found during these assessments.

During the past year, we were required to conduct one Level 1 Assessment due to one positive result in December. As a result, we were required to take the necessary corrective actions, which have sill been completed.

- The PWS DW staff did not retrieve a message of a TC+ sample until a week later at the Water Tower (Otis)/RS Sampling Code T-3.

-Due to corrosion and exposure to the elements, the sampling tap at T-3 had been determined to be unclean and unsuitable for sampling.

Both Water Tower sampling tops have been replaced.

-The PWS DW staff collected repeat samples, all negative.

-The PWS DW staff took action to ensure emails and volcensils are checked on daily basis during sampling activity.

What About Lead Exposure?

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Otis Air National Guard Base is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to two minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline at (800) 426-4791 or on the Internet, at the following link http://www.epa.gov/safewater/lead

Substance (unit of measurement)	Date(s) Collected	90 ⁷⁰ Percentile	Action Level	MCLG	≠ of sites sampled	# of sites above Action Level	Possible Source(s) of Contamination
Lead (ppb)	2018	0.2	15	Ð	40	0	Corrosion of household plumbing systems: Erosion of natural deposite
Copper (ppm)	2018	0.448	1.3	3	40	o	Corrosion of household plumbing systems: Erosion of natural deposits: Leaching from wood preservatives

Regulated Contaminant	Date(s) Collected	Highest Result	Range Detected	MCI. or MRDI	MCLG or MRDLG	Violation (Y/N)	Possible Source(s) o Contamination
norganic Contaminants							
Asbestos (MFL)	2013	N/A	ND	7	7	N	Decay of asbestos cement water mains; erosion of natural deposits
Barnım (ppm)	2018	C.016	0.00- 0.016	2	2	N	Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits
Chromium (pob)	2015	0.51	0.00-0.51	100	100	N	Discharge from pulp mills; crosion of natural deposit
Fluoride (ppm)*	2020	0.00	0.00-0.25	1	4	N	Erosion of natura deposits; water additive which promotes strong teeth; discharge from fertilizer an aluminum factorie
Fluoride also has a secondar	y contaminar	n level (SMCL) of	í 2 pp.m.	and a	13.74	5.4.13	100 TO
Nitrate (p y m)	2020	0.51	0.00-0.33	10	10	Ň	Runoff from fertilizer use; leaching from septic tanks; sewage; erosion o nararal deposits
Nitrite (ppm)	2020	0.44	0.00-0.44	L	1	N	Runoff from fertilizer use; leaching from septic tanks; sewage; erosion o natural deposits
Perchlorate (ppb)	2020	ND	Ν/Λ	2	N/A	N	Rocket propellant fireworks, munitions, flares blasting agents

Radioactive Contaminants							
Radium 226 & 228 (pCl/L) (combined values)	2015	1.10	a.623- 1.10	5	0	N	Erosion of natura deposits
Disinfectants and Disinfection	m By-Products						
Total Trihalomethanes (TTHMs) (ppb)	QTR3 (2020)	17.3	6.51-11.2	80	N/A	N	Byproduct of drinking water chlorination
Haloaxtic Acids (HAA5) (pph)	QTR3 (2020)	ND	MA	60	N/A	N	Byproduct of drinking water disinfection
Chlorine (ppm)	Monthly in (2020)	1.86	0.03-1.86	4	4	N	Water additive used to control microbes

Unregulated contaminants are those for which there are no established drinking water standards. The purpose of unregulated contaminant monitoring is to assist regulatory agencies in determining their occurrence in drinking water and whether future regulation is warranted.

Unregulated Contaminants	Date(s) Collected	Result or Range Detected	Average Detected	SMCL	ORSG	Possible Source(s) of Contamination
Bromodichloromethane	2019	6.73-8.64	7.67	N/A	N7A	Tribalomethane; by product of drinking water chlorination
Bremoform	2019	2.24-2.92	7,58	N/A	N/A	Trihalomethane: by product of drinking water chlorination
Chloroform (ppb)	2020	0.00-0.70	0.35	N/A	70	By product of drinking water chlorination (In non-chlorinated sources it may be naturally occurring)
Chromium-6	2015	0.0 0.19	0.145	N/A	N/A	Discharge from steel and pulp mills Ecosion of natural deposits
Dibromodichloromethane	2019	6.83-8.82	7.83	N/A	N/A	Trihalomethane; By-product of drinking water chlorination
Manganese" (pph)	2020	<0.005	<0.005	N/A	300	Erosion of natural deposits
'US EPA has established a life neurological effects, and a one						otect against concerns of potential
Methyl terliary butyl ether* or MTBB (ppb)	2016	0.63	0.315	20-40	70	Fuel additives leaks and spills from gasoline storage tanks

Unregulated Contaminants	Date(s) Collected	Result or Range Detected	Average Detected	SMCI.	ORSG	Possible Source(s) of Contamination
"5PA has established a lifetim Sodium (ppm)	e Health Advis 2019	sory (HA) of 5.1-5.6	0,3 mg/1. and 5.3	ат асиte H7 N/A	Kal 1,0 mg/l 30	Discharge from the use and improper storage of sodium- containing de icing compounds or in water-softening agents, natural crosion, road salt

UPPER CAPE REGIONAL WATER SUPPLY COOPERATIVE 2020 Consumer Confidence Report (PWS ID # 4261024) The Upper Cape Regional Drinking Water Supply Cooperative consists of three groundwater supply wells located in Sandwich, MA on Joint Base Cape Cod (JBCC). A Board of Managers representing four member public water supply systems manages the Cooperative. The Cooperative has the capacity to provide a supplemental supply of water to its member public. water systems, which include the Town of Falmouth, the Bourne Water District, the Mashpee Water District and the Sandwich Water District. The Cooperative also supplies water to the Otis Air National Guard public water system on IBCC. and the Barnstable County Jail. Wells #1, #2 and #3 are located in a forested area of the northeastern portion of the IBCC. In July 2004, the Department of Environmental Protection completed a source water assessment (SWAP) report for the Cooperative water supply wells. A SWAP report is a planning tool to support local and state efforts to improve water supply protection by identifying land uses within water supply protection areas that may be potential sources of contamination. The report identifies potential sources of contamination including a gas station, a medical facility and a military facility, and helps focus protection efforts on appropriate Best Management Practices. A susceptibility ranking of high was assigned to the Cooperative using information that was collected during the assessment. A copy of the report is available, upon request, from the Cooperative. JBCC has adopted a Groundwater Protection Plan to prohibit inappropriate activities on JBCC property within the Zone II areas of community public water supply wells. In addition, the Environmental Management Commission provides oversight over activities on the northern portion of the JBCC. For questions regarding SWAP or other information contained within this document call Marisa Picone-Devine at 508-888-7262. Our system, out of an abundance of caution and concerns about PFAS, sampled for PFAS compounds (PFBS, PFHpA, PFHAS, PFNA, PFOA, and PFOS) at all three wells in

2020 WATER QUALITY DATA: Listed below are the substances detected in water samples collected during the most recent sampling period from the three (3) wells that comprise the Upper Cape Drinking Water Supply Cooperative.

2019 and 2020; there were no detections of any of the analytes in any of the samples.

Inorganie Contaminants	Year Sampled	Highest Result	Range of Detections	MCL	MCLG	Violation (Y/N)	Possible Sources
Bariutt	2020	0.002 ppm	0.003 ppm	2 ppm	2 ppra	No	Discharge of drilling wastes; Discharge from metal reflective; Erector of natural deposits
Ninate	2020	0.13 ppm	0.13 ppm	10 ppm	10 ppm	No	Runoff from fertilizer use Lenching form septic tanks, sewage, Eroscou of natural deposits
Unregulated and Secondary Contaminants	Year Sampled	Amount Detected	Range of Detections	SMCL	ORSG	Violation	Possible Sources
Chlowfont	2020	2.19 ppb	1.46-2.19 ppb	NA	70 թչն	No	Trillalourethane by- product of drinking water chlorination. In non- chlorinated sources, chlorofirm may be naturally occurring
Chloride	2020	8.6 ppm	8.6 ppm	250 ppm		NO	Runoff and leaching from natural deposite; seawater influence
Соррен	2020	0.014 µpm	0.014 ppm	1 ppm	~	No	Internal corrosion of household planticing, erosio of natural deposits
Sodiem	2020	5.4 ppm	5.4 gpm		20 ppm	No	Natural emoion, road salt
Sulfax	2020	5.0 ppm	5.0 дрян	250 ppm	-	No	Banoff and leading from natural deposits; industrial works

Does My Drinking Water Meet Current Health Standards?

We are committed to providing you with the best water quality available. We are proud to report that last year your drinking water met all applicable health standards regulated by the state and federal government.

Health Effects Statements.

Total Coliform: Coliforms are bacteria that are naturally present in the environment and are used as an indicator that other potentially harmful bacteria may be present. Coliforms were found in more samples than allowed and this was a warning of potential problems. However, we've complied with the Fecal Coliform/B.coli MCL.

Fecal Coliforms and E.coli are bacteria whose presence indicates that the water may be contaminated with human or animal wastes. Microbes in these wastes can cause short-term effects, such as diarrhea, cramps, nausea, headaches, or other symptoms. They may pose a special health risk for infants, young children, and people with severely compromised immune systems.

CROSS-CONNECTION CONTROL AND BACKFLOW PREVENTION:

Otis Air National Guard Base makes every effort to ensure that the water delivered to your home and business is clean, safe and free of contamination. Our staff works very hard to protect the quality of the water delivered to our customers from the time the water is extracted via deep wells from underground aquifers or withdrawal point from a surface water source, throughout the entire treatment and distribution system. But what happens when the water reaches your home or business? Is there still a need to protect the water quality from contamination caused by a cross-connection? If so, how?

What is a cross-connection?

A cross-connection occurs whenever the drinking water supply is or could be in contact with potential sources of pollution or contamination. Cross-connections exist in piping arrangements or equipment that allows the drinking water to come in contact with non-potable liquids, solids, or gases (hazardous to humans) in event of a backflow.

What is a backflow?

Backflow is the undesired reverse of the water flow in the drinking water distribution lines. This backward flow of water can occur when the pressure created by equipment or a system such as a boiler or air-conditioning is higher than the water pressure inside the water distribution line (back pressure), or when the pressure in the distribution line drops due to routine occurrences such as water main breaks or heavy water demand causing the water to flow backward inside the water distribution system (back siphonage). Backflow is a problem that many water consumers are unaware of, a problem that each and every water customer has a responsibility to help prevent.

What can I do to help prevent a cross-connection?

Without the proper protection something as simple as a garden hose has the potential to contaminate or pollute the drinking water lines in your house. In fact over half of the country's cross-connection incidents involve unprotected garden hoses. There are very simple steps that you as a drinking water user can take to prevent such hazards, they are:

- NEVER submerge a hose in soapy water buckets, pel watering containers, pool, tubs, sinks, drains, or chemicals.
- NEVER attached a hose to a garden sprayer without the proper backflow preventer.
- Buy and install a hose bibb vacuum breaker in any threaded water fixture. The installation can be as easy
 as attaching a garden hose to a spigot. This inexpensive device is available at most hardware stores and
 home-improvement centers.
- Identify and be aware of potential cross-connections to your water line.
- · Buy appliances and equipment with backflow preventers.
- Buy and install backflow prevention devices or assemblies for all high and moderate hazard connections.

If you are the owner or manager of a property that is being used as a commercial, industrial, or institutional facility you must have your property's plumbing system surveyed for cross-connection by your water purveyor. If your property has NOT been surveyed for cross-connection, contact your water department to schedule a cross-connection survey.

Brown, Red, Orange, or Yellow Water.

Brown, red, orange, or yellow water is usually caused by rust. The different colors can be attributed to varying chemical oxidation states of the iron (rust) and by varying concentrations of the rust in the water. There are two major sources that can cause water to be rusty:

•The water mains, or

•The water pipes in your building

Rusty water occurs from sediment or rust from the inside walls of the water mains. The rust can be disturbed and temporarily suspended in water with unusual water flows from water main breaks or maintenance or by flushing of a hydrant. This discolored water is not a health threat.

When the water is discolored it is recommended to either not wash laundry or to use a rust stain remover or regular detergent but not chlorine bleach as it will react with the iron to form a permanent stain. The other major cause of brown, red, orange or yellow water is rusty water pipes in your building. Water that is being discolored by rusty pipes is not a health hazard.

This report was prepared by Otis Air National Guard Base PWS ID# 4096001 Distributed: June 2021 Bourne Water District Water Quality Report 2020

WATER SOURCES AND TREATMENT

The Bourne Water District is supplied by 10 different sources, 7 of our own gravel packed well sites and 3 gravel packed well sites from the Upper Cape Regional Water Supply Cooperative. Four of our well sites are in the Monument Beach area of the Town Forest. The other two wells are in the Cataumet area of the Town of Bourne. One well is on Joint Base Cape Cod and we have one transfer station on Connery Ave. The Bourne Water District treats all supplies with lime slurry for corrosion control. The lime slurry is used to raise the pH of the water. This makes the water less aggressive to the copper pipe and lead joints in your homes to prevent exposure to lead and copper.

WHAT DOES THE FOLLOWING TABLE MEAN?

Action Level (AL) The concentration of a contaminant which if exceeded triggers treatment or other requirements. Maximum Contaminant Level (MCL) The highest level of a contaminant that is allowed in the drinking water. The MCL is set as close to the MCLG as feasible using the best available treatment technology. Maximum Contaminant Level Goal (MCLG) The level of a contaminant in the drinking water below which there is no

known or expected risk to health. The MCLG allow for a margin of safety. 90th Percentile Out of every 10 houses sampled, 9 were below this level.

KEY TO TABLE

AL = Action Level MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal MFL = million fibers per liter Mrem/year = millirems per year (a measure of radiation absorbed by the body) NTU = Nephelometric Turbidity Units pci/l = picocuries per liter (a measurement of radioactivity) ppm = parts per million, or milligrams per liter (mg/l) ppb = parts per billion, or micrograms per liter (ug/l)

ppt = parts per trillion, or nanograms per fiter

ppq = parts per quadrillion, or picograms per fiter

TT = Treatment Technique

Microbial Results	Highest Detected	Range Detected	MCL	MCLG		Viol	ation	Possible Source of Contamination
Total Coliform Bacteria**	1	0-1	0		D		es	Naturally present in the environmen
Focal Coliform of F. Coli	0	0	0	_	0	,	lp.	Human and Animal Fedal Waste
*Compliance with the Fe				poir ad	ditional rep	-		
							sec as an in	dicator that other potentially harmful
hacteria may be present				-2011-0103	and a second cost			
Lead and Copper	Dates collected	90th Percentile	Action Level 1	NICGL	# of sites sampled	# Sites above Action Level	Violation	Possible Source of Contamination
Lead (ppb)	9/1/25201-75 12/31/2025 9/1/25201-75	0.0057	15	0	30	0	No	Corrosion of household plumbing systems: Urosio of natural deposits Corrosion of household plumbing systems.
Copper (ppm)	32/11/2025	0.311	1.3	13	30	0	No	Fresic of natural depesits
	4	1				1		
r ming or booking flyou are con tininise processine is available fro Regulated: Contaminants	in the Sale Drink	ing Water Hot inc		ACTER	fawara diead.	MCGL	din a miny w	Ale destrig mentods and statistics, can take to
	ontaminants:		nunge bete	erea.	Ince	Incor	Telación	
		1	Î		Î	<u> </u>		
Barium (ppm)	2020	0.009	0.002-0.0	09	2	2	No	Discherge of childing waster discharge from metal roh- or espresion of nutural Leposits
Nitrate * (ppm)	2020	D.7	0.05-0.7	σ	10	10	No	Buildff mon fast Toer, see, eaching mun world tan styawagererouon of instand deposits
Perchlorate ** (ppb)	2020	0	D		2	1.0	No	Rocket are without diversities, numbers , As exclusioning agents,* (see note below)
								ge High nitratul to els in drinking waten can cause
* Nitrate		your realth care		ar searer a	A DOM OF MAN	and a second	to agricultura	netivity. If you also enting for an infant, you should
**Periodalorate Various Chemical Abstract Sandos Regulty Numbers CASRM[Datd]Ferant chamical caselos	braion damag of 12, and per	e and other ad- opte with hypot		iculerly i are parti	n fetuses and collecty suscept	in 'ents. Pregr able to perchk	ent women, i mate toxicity.	to affect growth and development, causing the fetue, inferts and children up to the age
Organic Col	and the second sec				1	1		
letracribroathy ane() (E)(pps)	2020	1.64	0-1.64		5		No	Discharge from factories and dry cleaners
thiaralann (psb	2020	1.75	0-1.75	5	OR5G 70	NA	No	by product of denking water office mation
	10000	1000			1000			Fundling for Versies; eaching hors setting
3553 Dic-forcethylene (pob)	2020 Date(s)	2.08 Highest Detect	0-2.08		70	NA	No	Inn egy conjugation of call and deposite
Secondary Contaminents Magnesium (ppm)	collected 2020	Value 3.6	Range Dete 1.1-3.6		SMCL	OSRG		ssible Source of Contamination
Magnesium (ppin) Chlorice (ppin)	2020	40	7.2-40		250	NA	and the second second	neral and Organis Matter neral, Road Sa 1
		+0			250	NUX		
Calcium (ppm)	2020	6	2.5-6.0					neral and Organis Matter
iron (ppb)	2020	0.95	0-0.96		300	NA NA		 Depts to and contribution of Point perspectively.
Mangarese (ppb)*	2020	0.034	0-0.034		50	NA	5 	Natural Deposits
Sodium(ppm)**	2020	28**	5.7-28		12	20		gjerosion of natural deposits
Potassium (ppm)	2020	13		_	250	350		neral and Organis Matter
Sulfate (ppm) Zinc (ppm)	2020	7.2	multiple and the second second		250	250 NA	Natural Sou	urges such Departis, and industrial sischarge
"EPA has established a li								nor relieve Zinne, unsum 200,052
**Socium is a naturally besu have difficulty regulating fluid	rring element fi divelumens a re	eund in seil and suit of several	Water, it is neces: diseases , including	sary for g conges	the normal fur tive heart fail	nstioning of re ure and hypod	gulating fluid rtension Th	s in human systems. Some people, hewever, e guideline of 20mg/, for sedium represents carefully controlled. For additional

NATIONAL PRIMARY DRINKING WATER REGULATION COMPLIANCE

The Total Coliform rule requires water systems to meet a stricter limit for Coliform bacteria. Coliform bacteria are harmless, but the presence in water can be an indication of disease causing bacteria. When Coliform bacteria is found, special follow up tests are done to determine if harmful bacteria are present in the water supply. Over 500 Coliform samples were taken throughout the Bourne Water District in the year 2020. In August 2020 Bourne Water District had one detect of Total Coliform from a sample taken at the Bourne tank. Bourne Water District chlorinated the tank and rectified the issue. Bourne Water District completed the process with a Level 1 Assessment of the site and has not had any other Total Coliform hits anywhere in the system.

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead and copper in drinking water is primarily from materials and components associated with service lines and home plumbing. The Bourne Water District is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead and copper exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead and copper in your water, you may wish to have your water tested. Information on lead and copper in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

Sodium; ORSG = 20 Sodium sensitive individuals, such as those experiencing hypertension, kidney failure or congestive heart failure. should be aware of the levels of sodium in their drinking water where exposures are carefully being controlled. Massachusetts Office of Research and Standard Guidelines (ORSG): This is the concentration of a chemical in drinking water, at or below which, adverse health effects are likely to occur after chronic (lifetime) exposure, with a margin of safety. If exceeded, it serves as an indicator of the potential need for further action.

If you are interested in a more detailed report, contact Robert Prophett, at 508-563-2294.

REQUIRED ADDITIONAL HEALTH INFORMATION:

To insure that tap water is safe to drink, Department of Environmental Protection (DEP) and Environmental Protection Agency (EPA) pre-To matre that tap water is safe to drink, Department of Environmental Protection (DEP) and Environmental Protection Agency (EEA) pre-scribes limits on the amounts of certain contaminants in water provided by public water systems. Food and Drug Administration (FDA) and the Massachusetts Department of Public Health regulations establish limits for contaminants in bottled water. Drinking water, including bot-tled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not nec-essarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency Safe Dinking Water Hotline (1-800-426-4791). The sources of drinking water (both tap and bottled) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and radioactive material and can pick up substances resulting from the presence of animals or from human activity. Contaminants that may be present in the sources include:

- (A) Microbial contaminants such as viruses and bacteria which may come from sewage treatment plants, septic systems, agricultural livestock operations and wildlife.
- (B) [norganic contaminants such as salts and metals which can be naturally occurring or result from urban storm runoff, industrial or domestic wastewater discharges, oil and gas production, mining or farming.
- (C) Pesticides and herbicides, which may come from a variety of sources such as agriculture, storm water runoff and residential uses.
- (D) Organic chemical contaminants, including synthetic and volatile organics which are by-products of industrial processes and petroleum production and can also come from gas stations, urban storm water runoff and septic systems.
- (E) Radioactive contaminants, which can be naturally occurring or be the results of oil and gas production and mining activities. In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provid-ed by public water systems. FDA regulations establish limits for contaminants in bottled water which must provide the same profec-tion for public health.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infections by Cryptosporidium are available from the Safe Drinking Water Hotline (1-800-426-4791).

SOURCE WATER ASSESSMENT

The Bourne Water District had a source water assessment performed by the MA. Department of Environmental Protection in 2002. The Source Water Assessment and Protection (SWAP) program, established under the Federal Safe Drinking Water Act requires every state to:

- Inventory land uses within the recharge areas of all public water supply sources. .
- Assess the susceptibility of drinking water sources to contamination from these land uses.
- Publicize the results to provide support for improved protection. .

A susceptibility ranking of high was assigned to the Bourne Water District using the information collected during the assessment by the DEP. The high ranking was due to the potential contamination from land uses such as auto repair shops, truck. terminal, furniture refinishing, auto salvage operation, an industrial park and activities in the recharge area (Zone II's)of some of the wells. The complete SWAP report is available at the Bourne Water District's office. For more information con-tact Robert Prophett at 508-563-2294.

CROSS CONNECTION

A cross connection is a connection between a drinking water pipe and a polluted source. The pollution can come from your own home. For instance, you're going to spray fertilizer on your lawn, and you hook up your hose to the sprayer that contains the fertilizer. If the water pressure drops (say because of a fire hydrant being used or water main break) when the hose is connected to the fertilizer sprayer, the fertilizer may be sucked back into the drinking water pipes through your hose. Using an anti-siphon backflow-prevention device on your sprayer or hose bib can prevent this problem.

The Bourne Water District recommends using devices with an anti-siphon feature or equipping hose bibs with hose bib vacuum breakers to prevent against back flow. For additional information on cross connections and on the status of your water system's cross connection program, please contact Robert Prophett at 508-563-2294.

UPPER CAPE REGIONAL WATER SUPPLY COOPERATIVE 2020 Consumer Confidence Report (PWS ID # 4261024)

The Upper Cape Regional Drinking Water Supply Cooperative consists of three groundwater supply wells located in Sandwich, MA on Joint Base Cape Cod (JBCC). A Board of Managers representing four-member public water supply systems manages the Cooperative. The Cooperative has the capacity to provide a supplemental supply of water to its member public water systems, which include the Town of Falmouth, the Bourne Water District, the Mashpee Water District and the Sandwich Water District. The Cooperative also supplies water to the Otis Air National Guard public water system on JBCC and the Barnstable County Jail.

Wells #1, #2 and #3 are located in a forested area of the northeastern portion of the JBCC. In July 2004, the Department of Environmental Protection completed a source water assessment (SWAP) report for the Cooperative water supply wells. A SWAP report is a planning tool to support local and state efforts to improve water supply protection by identifying land uses within water supply protection areas that may be potential sources of contamination. The report identifies potential sources of contamination including a gas station, a medical facility and a military facility, and helps focus protection efforts on appropriate Best Management Practices. A susceptibility ranking of high was assigned to the Cooperative using information that was collected during the assessment. A copy of the report is available, upon request, from the Cooperative. JBCC has adopted a Groundwater Protection Plan to prohibit inappropriate activities on JBCC property within the Zone II areas of community public water supply wells. In addition, the Environmental Management Commission provides oversight over activities on the northern portion of the JBCC. For questions regarding SWAP or other information contained within this document call Marisa Picone-Devine at 508-888-7262.

Our system, out of an abundance of caution and concerns about PFAS, sampled for PFAS compounds (PFBS, PFHpA, PFHxS, PFNA, PFOA, and PFOS) at all three wells in 2019 and 2020; there were no detections of any of the analytes in any of the samples.

2020 WATER QUALITY DATA

Listed below are the substances detected in water samples collected during the most recent sampling period from the three (3) wells that comprise the Upper Cape Drinking Water Supply Cooperative.

Inorganic Contaminants	Year Sampled	Highest Result	Range of Detections	MCL	MCLG	Violation (Y/N)	Possible Sources
Bariun	2020	0.002 ypm	0.002 חויקיז	2 pprn	2 דידים	No	Discharge of drilling wastes; Discharge from metal redinctios; Broston of natural deposits
Nitrate	2020	0.13 ppm	0.13 ppm	10 ppm	10 ppm	No	Runoff from fertilizer use; Leaching form septic tanks, sewage: Brosion of natural deposits
Unregulated and Secondary Contaminants	Year Sampled	Amount Detected	Range of Detections	SMCL	ORSG	Violation	Possible Sources
Chloroform	2020	2.19 թրե	1.46-2.19 ррb	NA	70 ppb	No	Tribalomethane: by- product of drinking water chlorination. In non- chlorinated sources, chloroform may be naturally occurring
Chloride	2020	8.6 ppm	8.6 ppm	250 ррпл		NO	Runoff and leaching from nutural deposits; seawater influence
Copper	2020	0.014 ppm	0.014 ppm	1 ppm	-	No	Internal corrosion of household, plumbing; crosion of natural deposits
Sodium	2020	5.4 ppm	5.4 ppm		20 ppm	No	Natural crosion, road salt
Sulfine	2020	5.0 ppm	5.0 ppm	250 ppru	-	No	Runoff and leaching from natural deposits; industrial wastes

APPENDIX F CONSERVATION AND MANAGEMENT PERMIT COMPLIANCE AND MITIGATION ACTIONS

Conservation and Management Permit Compliance and Mitigation Actions Camp Edwards: Fiscal Year 2021

The Massechusetts Army National Guard maintains two Conservation and Management Permits (CMPs) under the Massachusetts Endangered Species Act (MESA, 321 CMR 10.00). The CMPs were developed within the framework of the Integrated Natural Resources Management Plan (INRMP) for Camp Edwards consistent with the Sikes Act and all implementing regulations for the MA Division of Fisheries and Wildlife (MADFW) and MA Army National Guard (MAARNG), including the Upper Cape Water Supply Reserve. The CMPs provide a collaborative and progressive path forward for training and operations at Camp Edwards while ensuring Net Benefit for state-listed species and their habitats at Joint Base Cape Cod (JBCC) directly through CMP associated actions as well as overall natural resources conservation and training lands management at JBCC.

The CMPs are held and administered by MAARNG and the MA Military Division and focus primarily on Camp Edwards' lands and operations. However, the "master plan" CMP was developed collaboratively with MA Air National Guard and includes both past mitigation commitments and implementation, as well as providing for potential future facilities actions for both services. This report includes updates and accomplishments for the FY2021 period covering October, 2020, through September, 2021. Reportable actions include facilities maintenance and development as provided by the permits, construction support actions, mitigation efforts, program administration, and planned activities for the coming fiscal year(s).

Acronyms and Definitions

This report uses many acronyms and abbreviations, as well as specific terms and titles. The majority are included here for clarity.

Acronym	Term
AgCS	Agassiz's Clam Shrimp (MESA fact sheet, NatureServe)
AmCS	American Clam Shrimp (MESA fact sheet, NatureServe)
CMP(s)	Conservation and Management Permit(s) (CMP overview)
CS	Clam Shrimp
CSCRMP	Clam Shrimp Conservation and Road Maintenance Plan
EBT	Eastern Box Turtle (MESA fact sheet)
EMC	Environmental Management Commission
EWPW	Eastern Whip-poor-will MESA overview)
FCRA	Forest Canopy Reserve Area
FY(xx)	Fiscal Year (xx is two digit year); Federal FY: 01 October - 30 September)
IAGWSP	Impact Area Groundwater Study Program (website)
INRMP	Integrated Natural Resources Management Plan (2021 INRMP)
JBCC	Joint Base Cape Cod (JBCC overview)
MA	Massachusetts
MAANG	Massachusetts Air National Guard (website)
MAARNG	Massachusetts Army National Guard (website)
MADEW	Massachusetts Division of Fisheries and Wildlife (website)
MANG	Massachusetts National Guard (joint) (website)
MEPA	Massachusetts Environmental Policy Act (website)
MESA	Massachusetts Endangered Species Act (MESA overview)
MPMG	Multi-Purpose Machine Gun (Range)
NEPA	National Environmental Policy Act (website)
NHESP	Natural Heritage and Endangered Species Program (website)
PBMFA	Pine Barrens Mitigation Focal Area
SGCN	Species of Greatest Conservation Need (State Wildlife Action Plan)
SMRC	Special Military Reservation Commission
UCWSR	Upper Cape Water Supply Reserve
UMass	University of Massachusetts
USFWS	United States Fish and Wildlife Service
UV	Ultraviolet

2

Camp Edwards CMP Permit Compliance and Miligation – Fiscal Year 2021 The Pink Prominent Moth (*Hyparpax aurora*) is a stunning scrub oak (*Quercus ilicifolia*) associate that is rare throughout its range with very localized distribution in Massachusetts. This individual was observed during a MAARNG hosted Massachusetts Butterfly Club survey for Acadian Hairstreak Butterflies in Pine Barrens Mitigation Focal Area – North, with a high number of rare and state-listed species within a diverse barrens habitat mosaic, including powerline right of way, adjacent to a primary road and active seldier training features.

Agassiz's Clam Shrimp and Training Area Roads Conservation and Management Permit

Conservation Permit #: 018-327.DFW NHESP Files #: 17-37184 Project: Road Repair and Clam Shrimp Relocation Date: 08-NOV-2018; amended 14-JUL-2021

An initial CMP was developed in 2017 and 2018 to provide for localized road repair at Camp Edwards while providing for conservation of the Endangered Agassiz's Clam Shrimp (*Eulimnadia agassizii*, AgCS). Under that original permit two sites along Cat Road were repaired as *in situ* sites in Training Year (TY) 2020. Prior to that, in TY2019, one site was modified *in-situ* and five sites (Cat Road [3], Herbert Road [2]) were repaired and replaced through active construction or repair of vernal pool or road puddle sites and relocation of clam shrimp or sediment. Three years of monitoring, as required, were completed in TY 2020, but an additional year of monitoring was completed in TY21 due to the 2020 drought conditions

and the focal conservation interest of the species for MAARNG.

Precipitation patterns were back to normal for the 2021 survey season. Natural Resources staff conducted repeated surveys following the standard approved protocol. In total, a subset of 12 puddles were surveyed. Four puddles were CMP mitigation puddles, five were puddles not surveyed previously, and five were known to support AgCS in previous years. From mid-May to October, puddles containing standing water were measured for area, depth, temperature and pH, and all aquatic life observed was recorded.

Agassiz's Clam Shrimp survey and active relocation efforts supporting critical road maintenance.

Clam shrimp were observed in seven of the twelve surveyed puddles, however, not all clam shrimp were identified to be AgCS. AgCS were encountered in five puddles with four puddles being new locations for AgCS records. American Clam Shrimp (Limnodia lenticularis, AmCS), a state-listed species of special concern, not previously confirmed on the base, were encountered in three puddles (two monitoring puddles contained both species). AmCS collected samples, along with AgCS, have been submitted to NHESP for verification of ID. Clam shrimp collected from one puddle were not able to be identified in the lab due to poor condition of the sample. This means that 50 percent of puddles surveyed in 2021 contained AgCS and/or AmCS, if we don't count the unknown clam shrimp species. This percent is up from 2019 and 2020 survey years in which approximately 30 percent of puddles surveyed contained AgCS. In 2018, the first year of monitoring, 25 puddles were surveyed and 80 percent of those contained clam shrimp. All data and results are provided separately to MassWildlife and observation reporting through Heritage Hub (https://www.mass.gov/ info-details/overview-of-the-heritage-hub). Additional FY21 monitoring results worth noting are that two of the four CMP puddles modified in-situ in TY2019 and TY2020 contained clam shrimp, one on Cat road contained AgCS and one on Canal View Road contained AmCS. The seven positive observations were distributed throughout Camp Edwards, occurring in all five training area zones. Zones are discussed below as part of the CMP amendment.

3

Camp Edwards CMP Permit Compliance and Mitigation – Fiscal Year 2021

The primary effort for AgCS, other than ongoing monitoring, was collaboratively developing an amendment to the existing permit to provide for holistic AgCS conservation and road maintenance within the training area. The presence of AgCS within some larger publics precluded necessary repairs, which led to the development of the original permit, relocation efforts, and repair of select features. The next step with MassWildlife was to apply lessons from the original effort to development of an overarching road maintenance strategy that could provide for both a sustainable and usable road network and

sustainable and healthy AgCS population throughout Camp Edwards. A well maintained road network is fundamental to supporting all operations on Camp Edwards, including groundwater monitoring, active remediation, natural resources management, and, critically, soldier training. A usable and maintained road network appears to also be critical to clarm shrimp persistence as prolonged lack of maintenance duickly leads to exacerbation of puddles into unsuitable conditions for clarm shrimp and eventually vegetation of the road bed and loss of roads and road puddles. Maintenance and use provides both roads and puddles.

Amendment of the original permit was completed

in the summer of 2021. Both parties chose to amend the existing permit as it carries forward the framework of the original, including monitoring and Net Benefit through a combination of relocation and repair in place. The updated CMP establishes multiple categories of roads and establishes processes and standards for road puddle repair. Additionally, it establishes five zones of the northern training area for supporting a baseline number of puddles within each zone as primary habitat for ACS.

The priority action for FY21 was repair of the impact area perimeter roads (Jefferson, Barlow, Wheelock, and Crowell) and two key impact area access roads. These had become severely degraded and occasionally impassable, in large part due to prohibition on maintenance due to known ACS presence in puddles along the northern, western, and southern impact area boundary roads. These are key roads both for remediation activities and emergency response. The Clam Shrimp Conservation and Road Maintenance Plan (CSCRMP) establishes a Critical Road designation, which includes the existing paved roads, the impact area boundary and select access roads, and the primary access routes of Burgoyne and Gibbs Roads. These critical roads are intended to be frequently maintained and not intended for puddles, which will also serve to minimize box turtle risks on higher use roads. The impact area boundary repairs are ongoing currently through the Impact Area Groundwater Study Program (IAGWSP).

The permit amendment calls for an annual road maintenance and repair plan to be submitted to MassWildlife, which will include priority road and puddle repairs, current condition relative to repair standards in the CSCRMP, AgCS (and now AmCS) presence if documented, and impact on the zone puddle baseline. Additionally, the annual plan will outline mitigation requirements consistent with the described framework in the CSCRMP.

4

Camp Edwards CMP Permit Compliance and Miligation – Fiscal Year 2021

The CSCRMP and the Conservation and Management Permit were circulated through relevant stakeholders at Camp Edwards. However, two projects identified a need for more detailed training and internal communication. A troop labor road repair was implemented in September, 2021 on the western portion of Estey Road and southern portion of Fredrikson Road (Training Area A-3) without prior coordination. A previously developed engineering design was used and there were no existing puddles so no major issues occurred and no clam shrimp habitat was taken. However, it identified some communication and process gaps that have been addressed. Additionally, during the October/November road repairs implemented by IAGWSP, the working contractor graced a section of Wheelock Road

without prior approval to facilitate material hauling. This section had received clam shrimp in three puddles as mitigation for the impact area boundary work and the puddles had been signed. Mitigation for this take is discussed in the annual road maintenance plan.

While the planning, preparation, and mitigation portions of the conservation plan are working well there are still weaknesses in communication and coordination that are being addressed. Two meetings have been held since the grading incident that included all potential road/trail maintenance and repair stakeholders. During these meetings, stakeholders were also able to identify roads and road sections in need of repair and planned for FY22. With this, required and/or voluntary mitigation was assessed based on potential impacts to available and known clam shrimp habitat, as well as other wildlife, and worked into the FY22 annual road work plan. This plan has been submitted to MassWildlife for review, coordination, and approval. A plan to mitigate for the loss of clam shrimp habitat and clam shrimp

5

incividuals from the Wheelock Road gracing was also included in the work plan. It's the intent that these meetings involving all potential road/trail maintenance/repair stakeholders will occur on at least an annual basis for consensus on road work planning and clam shrimp habitat and mitigation requirements.

Camp Edwards CMP Permit Compliance and Miligation – Fiscal Year 2021

MA National Guard Master Development Plan Conservation and Management Permit

Conservation Permit #: 020-358.DFW

NHESP Files #: 18-37434

Project: Camp Edwards Multi-Purpose Machine Gun (MPMG) Range and Master Development Plan Date: 29-SEP-2020

The Massachusetts Army National Guard received a Conservation and Management Permit in 2020 that established a master planning framework for projects implemented at Joint Base Cape Cod by both Air and Army National Guard. To support this master plan approach, a comprehensive mitigation plan was developed including establishing an on-site mitigation bank covering multiple habitats. The primary projects incorporated into the master planning mitigation strategy include MPMG Range at the current KD Range location, Infantry Squad Battle Course at the formerly used Infantry Battle Course location, expansion of Tango and Sierra ranges, Cantonment modernization including a running track and classroom buildings, and potential future solar development. The mitigation plan combines project design/impact minimization, take avoidance, land transfers, extensive

feeding on Lowbush Blueberry. Detected and shown with ultraviolet light during rare caterpillar surveys at Sierra Range.

habitat improvement, and long-term monitoring to provide for Net Benefit of a large number of statelisted species. It also establishes a framework for ongoing site development (including additional or modified projects) and land use planning while providing for proactive mitigation and demonstrable net benefit for state-listed species.

The mitigation plan focuses on species guilds (pine barrens and sandplain grassland) for the majority of species with similar habitat condition needs and/or threats (e.g., loss of open canopy condition through forest closure). The Eastern Box Turtle (*Terropene carolina*, EB1) is treated separately as it has differing needs and threats compared to the other species. Mitigation focal areas, tied to the guilds, have been identified to localize various mitigation actions for maximized benefit. Standards for mitigation have been developed for each type of guild and focal area to ensure sufficient conservation commitments are included in the plan and to provide assurances to MADFW for net benefit. For example, pine barrens mitigation will require 20% to 40% of habitat improvement work to be in the form of mechanical forestry, as the majority of the pine barrens guild species are threatened and declining due to tree

encroachment and canopy closure where suitable and protected habitat exists. In addition to pine barrens and grassland focal areas, forest canopy retention areas are identified for box turtle hibernation and these areas are prioritized for maintenance of later successional forest condition and closed tree canopy.

Real Property Actions. Extensive land protection through real property actions was a fundamental component of the master CMP. One parcel (Special Military Reserve Commission [SMRC] Tract 5) that had already been transferred to MADEW was included in this agreement, as it had been transferred for a

project that did not occur and the transfer was specified as mitigation. Additionally, SMRC Tracts 1-4 were transferred to MADFW as mitigation through this agreement in 2020. Tracts 1-5 total 260 acres and are directly adjacent to Crane Wildlife Management area; these tracts represent a significant expansion to this public conservation area. Another parcel previously identified for mitigation land transfer was Parcel H of Unit K, which is 150 acres of former parade field in cantonment. This transfer was included within the master CMP agreement. The parcel was transferred to Military Division in 2020 and will be fully transferred to MADFW with anticipated completion in 2022. MANG will receive a license to maintain overall access and use to meet perpetual habitat conversion and long-term management requirements under the mitigation agreement. There are no new updates for FY21 regarding real property actions. The

MANG State Quartermaster has been in regular communication with the MA Department of Fish and Game General Counsel to develop Care, Custody, and Control agreements for the transferred parcels and to complete the transfer of Parcel H of Unit K.

Construction Projects. Approval and construction of the flagship project – the MPMG Range – has been delayed and is pending resumption of the Environmental Management Commission process. However, the redevelopment of Tango Range, which was approved under the CMP in FY20, was completed at the end of FY21. Final reports are in development and near completion for Tango Range permit compliance. Additionally, the soil

Restored serub oak shrubland pocket within Pine Barrens Mitigation Focal Area West (Training Area E-4, OP10); Sept. 2021. The original restoration (Nov. 2017); preceded mitigation, but it is an excellent reference site.

staging operation in partnership with Eversource was completed in FY21. Material from the redevelopment of the Bourne Switching station was accepted by Camp Edwards for clean fill material. The hauling and staging was permitted under the MAARNG CMP, including turtle protection provided by Eversource. The management of the turtle protection for the staged soil is being transferred to MAARNG in the late fall of 2021 and will persist until soil is used for the MPMG Range construction.

Mitigation Implementation. The framework of the CMP was erected to encourage early and abundant investment in monitoring and active mitigation efforts supporting the overall mitigation bank and evaluation of long-term monitoring results. MAARNG has consistently, effectively, and extensively managed for and monitored state-listed species, their habitats, and overall ecosystem health. CMP reportable and funded actions are a specific subset of MESA-related management, which itself is a subset within our overall natural resources management and ecosystem sustainability efforts. All of these efforts are guided by and captured within the Camp Edwards Integrated Natural Resources Management Plan (2021; https://www.massnationalguard.org/ERC/publications/Natural_Cultural/Final-INRMP-21.pdf) and frequent coordination with Sikes Act partner agencies (MADFW, US Fish and Wildlife Service), multiple other partner agencies, conservation collaboratives, universities, and others. CMP mitigation actions are implemented within mitigation focal areas (Pine Barrens, Sandplain Grassland, Forest Canopy Reserves). They also meet specified objectives of the CMP, associated plans, and interagency coordination (e.g., annual review meetings). The master development plan CMP effectively doubled the NR-ITAM project budget for active conservation efforts, including monitoring and habitat restoration and management.

7

Sum of Contract Cost		Grand			
Project Type	2019	2020	2021	Total	
Mitigation: Administrative	\$6,020	\$45,169	\$11,262	\$62,451	
Mitigation: Construction support		\$221,876		\$221,876	
Mitigation: Monitoring	\$62,810	\$103,248	\$108,058	\$274,116	
Mitigation: Other					
Mitigation: Initial treatment, fire	\$64,480			\$64,480	
Mitigation: Initial treatment, mechanical	\$179,986	\$88,458	\$148,900	\$417,344	
Mitigation: Maintenance treatment, other		\$55,950	\$8,000	\$63,950	
Grand Total	\$313,295	\$514,701	\$276,220	\$1,104,216	

Table 1. Contracted expenditure by federal fiscal year implementing the Master Plan CMP.

Sum of Mitigation Acreage		Fiscal	Year		Grand
Project Type	2019	2020	2021	2022	Total
Pine Barrens	520	401	184.4		950.4
Construction: Pine Barrens		-6		-412	-418
Mitigation: Initial treatment, fire	448		. I()	40	488
Mitigation: Initial treatment, mechanical	72	106	164	27	369
Mitigation: Maintenance treatment, fire			20	190	210
Mitigation: Maintenance treatment, other		40			40
Mitigation: Real Property	1	261			261
Sandplain Grassland	42	80	47	168	17:
Construction: Sandplain Grassland				-36	-36
Mitigation: Initial treatment, fire	42			40	82
Mitigation: Initial treatment, mechanical		80			80
Mitigation: Maintenance treatment, fire			47		47
Mitigation: Maintenance treatment, other				14	14
Mitigation: Real Property				150	150
Grand Total	562	481	231.4	13	1287

Table 2. Acreage totals for mitigation banking under the Master Plan CMP by federal fiscal year and project type. Maintenance actions meet the perpetual maintenance requirement. Negative numbers represent Take under MESA and draw against the "account" with a coefficient to account for mitigation ratios. Acres are frequently counted the year after funding where a project is planned and funded from one FY, but implemented during the following winter due to conservation best management practices.

8

Camp Edwards CMP Permit Compliance and Mitigation – Fiscal Year 2021

Mitigation investment for specific CMP implementation contracts and projects totalec \$276,220. The primary difference from the previous year's higher investment. was construction support for box turtles, which was contracted in 2020 to cover the entirety of the proposed Multi-Purpose Machine Gun (MPMG) Range construction. All requested funds for FY21 were received from National Guare Bureau to support proposed projects and all received funcs were obligated within FY21. The breakcown by category of FY21 CMP expenditures is outlined in Table 1. This does not include staff time and salary nor does it include other state-listed species. projects not directly associated with the CMP (e.g., bat monitoring, state-listed species habitat restoration outside the focal areas, etc.). An additional \$290,000 was spent on staff time and other state-listed species specific projects {i.e., where one or more state-listed species was

the primary objective rather than general ecosystem or program).

Several major mitigation efforts were completed, ongoing, and/or initiated in FY21, addressing all the above-listed components of the master CMP. The mitigation actions implemented during FY21 totaled 231 acres of active habitat restoration. Prescribed fire remained limited in FY21, but was reinvigorated after FY20 did not have prescribed burning due to weather and the pandemid. Multiple trainings and four burn days occurred at Camp Edwards in FY21. Three prescribed burns were fully or partially within mitigation areas, though the Sierra Range barrens habitat is associated with an earlier mitigation agreement, not the master development plan CMP and is not counted in this report. Extensive resource monitoring, including many in-house efforts, were completed or underway in FY21 in addition to active habitat management. Projects undertaken in FY21 as part of mitigation efforts are summarized below. Note that projects and efforts that are programmatic in nature or otherwise not specifically meeting requirements of the Permits are not included, but are reported in both the Annual State of the Reservation Report and Camp Edwards INRMP Annual Review.

Project Scoping, Design Minimization, and NHESP Review

- MPMG Range NHESP review and approval was completed in September 2020, preceded by completion of the MA Environmental Policy Act (MEPA) process in July 2020; followed by finalization of the National Environmental Policy Act (NEPA) process in April 2021. Project implementation is pending final approval from the Environmental Management Commission. Turtle protection plans were amended in coordination with MADFW to address the delayed implementation and develop a protective alternative for hibernating turtles.
- Tango Range Construction and turtle protection actions were completed in September 2021. The preconstruction survey report was submitted in November 2020 and an interim, year-end report was submitted to NHESP in January 2021. The closeout report for turtle protection was submitted on 10-DEC-2021 and approved by NHESP on 14-DEC-2021. The closeout and compliance report for the overall construction is in development and will be submitted to MADFW consistent with permit requirements with anticipated delivery by the end of 2021.

9

- Track and Field (1800 area) MADFW reviewed and approved final plans, turtle protection plan, and Net Benefit for the project design and consistency with the CMP January 12^{t*}, 2021. The project, including minimal land clearing and development of a track and field to support soldier fitness and training adjacent to the gymnasium, has been indefinitely put on hold pending funding. MEPA/MESA reviews and approvals are complete and notification will be made when funding is available to contract project implementation, including compliance with the CMP and turtle protection actions. Anticipated contracting is the middle of FY22.
- ISBC Range Design consultation and internal review are ongoing. Anticipating environmental review of design in late FY22.

Species Protection

- o MPMG Range Intensive year 3 of Eastern Box Turtle surveys implementing the approved turtle protection plan. The FY20 report was submitted in February 2021 to NHESP, and the FY21 report will be submitted in early 2022. Additional pre-construction surveys were added to the plan given the delayed construction implementation. The protection plan and actions were amended given the lack of turtle exclusion barrier, which is part of the construction contract and requires unexploded ordnance support. A movement barrier was installed, with approval, by in-house personnel to provide an area of good hibernation habitat (based on observed density of use) near the proposed project site. Additional pre-construction surveys were completed in the fall of 2021. As winter approaches, turtles within the limits of work will be relocated behind the barrier to allow for winter installation of the silt fence and tree removal.
- Tango Range The preconstruction survey report was submitted in November 2020 and an interim, year-end report was submitted to NHESP in January 2021. In FY 2021, surveys during construction continued and oversight during silt fence removal was completed at the end of the project. The closeout report for turtle protection was submitted on 10-DEC-2021 and approved by NHESP on 14-DEC-2021.
- Track and Field (1800 area) The turtle protection plan was developed and approved by NHESP during project design and design submission. No action has been taken as the project was put on hold pending funding. If funding becomes available turtle protection implementation will be part of the construction contract and confirmation will be made with NHESP of compliance with turtle protection and all other permit requirements.
- Soil Stockpiling at Dig Site Eversource completed a turtle protection project at the Dig Site to
 enclose the site, survey for turtles, and monitor. The Dig Site is being used as a stockpiling site
 for clean, tested on-site soil that will be used on future construction projects on base. The
 monitoring, maintenance and reporting for this site has been taken over by the MAARNG in FY22.

Species Monitoring (CMP focused)

- Eastern Box Turtle (EBT)
 - MAARNG NR-ITAM contracted the University of Illinois Wildlife Epidemiology Laboratory to implement an intensive box turtle health assessment. A total of 59 box turtles were sampled, the majority of which had physical assessments and blood samples taken multiple times through the summer to evaluate overall condition of the population and potential

influences leading to the prevalence of fly larvae, suspected sarcophagid, infestations and other potential health concerns. This project coordinated very closely with NR-ITAM, working from the same office, and others at Camp Edwards to gain efficiency from other ongoing turtle projects and opportunistic turtle observations from other site users. Oxbow Associates, working for on a turtle protection project for Eversource, tagged one turtle on Camp Edwards that was sampled and also escorted the veterinary student to sample 11 box turtles at their site in Sandwich. The veterinary student was also able to sample Spotted turtles captured during a Legacy funded project awarded to the Smithsonian. Sample analysis, data analysis, and reporting are ongoing. Updates from the field effort are available online from the veterinary student at: https://vetmed.illinois.edu/wel/author/capecodturtles/

- MAARNG applied radio transmitters and monitored previously transtmittered turtles for an end of year total of 54 EBT during FY21 as part of the long-term box turtle monitoring requirement. This includes opportunistic turtle observations from a number of programs, including NR-ITAM, Camp Edwards Range Control, IAGWSP, other site users, soldiers within training units, and the following projects.
- Preconstruction surveys referenced above led to the discovery of 5 new EBT (4 at the MPMG and one near Tango Range) and one previously tagged turtle that had lost a transmitter. Radiotransmitters were applied to all 6 individuals. Two mortalities were documented, including one road mortality in a nearby training area and one mortality from unknown causes. The signals for two turtles cannot be located, but one of the turtles was last heard coming from the Impact Area. Radio failure can also cause the loss of signal. Preconstruction survey and monitoring will continue for MPMG Range.
- MAARNG NR-ITAM contracted a "planning level survey" effort targeted at providing baseline data on box turtle presence and approximate density in a variety of training areas and habitat conditions distributed throughout Camp Edwards. Seven (7) EBT were detected in FY21 as part of this effort and all individuals were outfitted with radio transmitters for long-term tracking.
- MAARNG, MADFW, and USFWS are coordinating with a graduate student at University of Massachusetts (UMass) Amherst's Massachusetts Cooperative Fish and Wildlife Research Unit (website) who plans to monitor and investigate the population of transmittered turtles at Camp Edwards.

Breeding Bird Point-counts

 Point-count surveys were conducted from 24 May through 24 June, 2021. Three surveys were conducted at each of 79 points throughout Camp Edwards, including 14 grassland (cantonment) points and 65 points

Prairie Warbler is classified as a Species of Greatest Conservation Need and is locally relatively abundant and widespread at Camp Edwards, showing positive response to pine barrens habitat management.

in the northern training area. A total of 80 species were documented at point-count locations during the month of surveys.

Camp Edwards CMP Permit Compliance and Miligation – Fiscal Year 2021
Long-term trend analysis was completed for the newer point-count protocol covering data collected from 2013 through 2020. This standard point-count methodology allows for analyzing both abundance and occupancy whereas the 1994-2013 methodology primarily supports occupancy analysis. Trends in occupancy were compared for the different periods. and show positive or stable trends for nearly all Species of Greatest Conservation Need (SGCN) as identified by the State Wildlife Action Plan. Scarlet Tanager (Piranga olivacea) and Brown Thrasher (Toxostoma rufum) are two useful habitat indicators species, both of which were documented with significant increases over the 1994-2013 period (+2.6% and +2.0% per year, respectively) despite regional/rangewide declines for each (from -2% to -9% per year). Scarlet Tanager averaged over 76% occupancy at Camp Edwards from 2013-2020 with increasing occupancy trend similar to the previous period and a significantly increasing per point count trend, compared to a mean of 40% occupancy for the prior survey period. Additionally, Brown Thrasher averaged over 60% occupancy with increasing, but not statistically significant trends for both occupancy and count, compared to a mean of roughly 23% occupancy for the prior survey period. Likewise, species such as Field Sparrow (Spizella pusilla) and Prairie Warbler (Setophaga discolor) are showing notable, though not yet statistically significant, increases in the northern training area in response to expanded habitat restoration while concurrently declining within primary grassland habitat as expected with reduction in shrub cover through habitat restoration. A full report on the monitoring data analysis will be developed in 2022 and provided to MADFW and others.

Eastern Whip-poor-will (EWPW)

MAARNG NR-ITAM personnel conducted EWPW point-count transect surveys on 19 May, 2021. Three transects were conducted concurrently on one night covering 32 point-count locations throughout the northern training area. Whip-poor-wills were detected at all 32 locations for 100% occupancy. The mean per-point count was 4.3 birds, continuing a long-term stable to increasing trend from 2013 through 2021. Surveys are completed in coordination with MADFW and follow the Northeastern Nightjar Survey protocol. Additional, more opportunistic point-count surveys were conducted prior to the formal survey window and main survey night to provide greater confidence in results and these

efforts provided consistent results. A full report on the effort has been sent to MADFW. Notably, in a 2021 publication (online access) researchers at Fort Drum Army Installation found that managed forest stands were preferred by EWPW reaching peak occupancy at a basal area of approximately 60 square feet per acre. This is very similar to the 80 square feet per acre or less target for southern pine beetle preparedness and shaded fuel break maintenance.

Lepidoptera (Moths and Butterflies)

 <u>Pine Barrens Moths</u>: Development of a statistically robust and comprehensive moth monitoring protocol continued through a contract from MAARNG NR-ITAM with Western EcoSystems Technology, Inc. (WEST). The protocol and

Grapholita tristrigana is a common barrens specialist moth at Camp Edwards with hostplant of Baptisia. It has a highly localized distribution in the eastern US.

Camp Edwards CMP Permit Compliance and Miligation – Fiscal Year 2021

12

supporting elements were completed and delivered at the end of November 2021. The initial round of vegetation surveys under the new protocol was completed during the summer of 2021. The overall protocol has a foundation of vegetation surveys that will evaluate change in structure and composition. In addition, protocols have been developed for nocturnal moth sampling and targeted diurnal sampling. The initial nocturnal UV trapping effort is anticipated during the summer of 2022.

- Frosted Elfin Butterfly and Slender Clearwing Moth: The Frosted Elfin Butterfly (Callophrys irus) is state-listed and being considered for federal listing. MAARNG NR-ITAM completed three formal surveys in May through July following the range-wide protocol developed by USFWS including a multi-step protocol covering vegetation, adults, and larvae. One of the survey units is within the Sandplain Grassland Mitigation Focal Area (Primary) while another is within the Sierra Range barrens habitat mitigation area (not part of the CMP mitigation). The third location is in the powerline right of way along Gibbs Road in Training Area C-13. Frosted Elfins were detected as adults at all three locations and appear to be expanding, especially in the grasslands sampling area. Follow-up larval surveys were completed with ultraviolet (UV) flashlights, which is particularly effective for Frosted Elfins, Slender Clearwing Moths (Hemaris gracilis), Barrens Buck Moth (Hemileuca maia) and other listed or otherwise rare Lepidoptera. Three nights of caterpillar surveys were completed in June and July 2021 covering the three sample sites with Frosted Elfins documented foraging on Baptisia tinctoria at all three. Slender Clearwing Moth was again documented with multiple individuals at the Sierra Range barrens habitat and new locations documented with a caterpillar at the northwestern elfin survey location and an adult photographed in the central grasslands of the SGMFA (Primary) for a total of four sites at Camp Edwards for this likely under-surveyed and secretive low blueberry specialist.
- General Moths: More opportunistic moth survey and documentation has continued forward from 2019. During FY21 a continued partnership with Teá Kesting-Handly, a graduate student from UMass Boston, led to multiple UV-light moth surveys with the two primary locations situated within mitigation focal areas SGMFA (Primary) and PBMFA (West). These efforts have led to documentation of several listed species and other species of significant conservation concern. Additionally, many informal diurnal photography efforts by Jake McCumber led to documentation of rare barrens associated species, including multiple new species documented for Barnstable County and one new species for the Commonwealth (*Ptycerata buskella*). Of particular management interest is documentation of many rare barrens habitat specialists that are poorly represented in New England or throughout their ranges. The growing suite of online identification aids and digital photography are significant facilitators allowing for better documentation, in particular, of microlepidoptera.

State- listed Plants

Frost bottom associates: The CMP does not have specific state-listed plant monitoring requirements, but does reference monitoring and reporting will be done. How best to monitor these plants, particularly Adder's Tongue Fern (*Ophioglossum pusillum*) and Broad Tinker's-weed (*Triosteum perfoliatum*), while minimizing disturbance is still a topic of mutual interest and discussion with MassWildlife. For FY21 broad-scale monitoring was not implemented. Effort focused on installation of a wooden "buck and pole" style fence around a frost bottom location for both species. It anecdotally appeared to eliminate

browsing by deer while having the benefit of being wooden and temporary fencing without soil impacts or digging.

New listed species: A new MESA-listed species for IBCC was discovered in FY21 in two separate locations, both of which are within a mitigation focal area. Grass-leaved Ladies'-tresses Orchid is listed as Threatened in Massachusetts with similar threats as most other JBCC species, including development and habitat succession. This is a fairly expected species on-site and at the locations found. It is expected to respond positively to ongoing management efforts to expand and maintain suitable habitat. Location information is excluded here, but full reporting will be provided through Heritage Hub, MassWildlife's rare species reporting online database.

Habitat Management and Planning

Planning – A comprehensive prescribed burn plan was developed for Training Areas BA-7 and BA-1 within PBMEA-South. This facilitates prescribed burn treatment following the completed mastication work described below and the BA-7 prescribed burns completed in 2013 with strongly positive rare species response.

Pine Barrens Mechanical Restoration

- Implementation was completed for the previously (FY20) contracted mechanical treatment in BA-7, which involved mowing dead trees across 157 acres to facilitate reentry with prescribed fire. This was a critical restoration step and included patchy mowing of shrub vegetation to introduce more heterogeneity in shrub layer structure.
- In-house scrub oak and other shrub mowing (7.4 acres) was ongoing in Training Area B-6 (PBMFA-South) as part of a small-scale and long term patch mowing to diversify age and structure composition in a good pitch pine – scrub oak area that is more challenging to burn and has needed maintenance after last having prescribed fire in 2009.
- A whole-tree harvest project was contracted in FY21 for winter implementation in Training Area E-3 (Burn Unit RAW3, PBMFA-West). Due to increased costs of implementation the project was scaled down to the highest priority 27 acres, which will expose an overgrown kettle hole depression and its "airshed" with intent of restoring frost bottom ecological

function with scrub oak shrubland transitioning into pitch pine – scrub oak habitat at the transition from glacial moraine to the impact area. This is the highest priority type of restoration effort as it restores impact area type habitat in areas where habitat maintenance may be implemented and the project area will transition into the previously restored OP9/OP10 area (shown above).

Prescribed Burning

 A grassland habitat maintenance burn of 47 acres was completed in subunit GLU04a within SGMEA-Primary (Parcel H of Unit K) as part of the ongoing restoration and maintenance of that

14

Grassland unit GLU04a two months after prescribed fire and 1.5 years after brush mowing. The area had a vigorous response of important host plants followed by flush of little bluestern. Many rare habitat specialists were documented post burn including the rare Sitochrop dosconalis and Pococero boptisiella.

150-acre parcel. The burn followed major restoration effort to remove trees from 2018, followed by brush mowing in 2021. Resprouting exotic shrubs were treated with herbicide in early FY22. This habitat area has been very effectively restored to functioning and diverse grassland and the burned area was the location for numerous rare moth observations this summer (Baptisia and heath specialists) along with an expansion area for both outterfly milkweed (*Asclepios tuberoso*) and one of its obligates – the state-listed Unexpected Cycnia Moth (*Cycnia inopinatus*).

- A pine barrens habitat maintenance prescribed burn of approximately 20 acres was conducted in Training Area E-3 (PBFA-West) in the OP-01 area on 14-APR-2021 as follow-up maintenance to the 2017 harvest and burn. The entire intended unit was not completed due to fire behavior more active than anticipated and the remainder of the unit will likely be completed in 2022. The partial burn provides good habitat heterogeneity and had excellent vegetative response- especially heath species.
- A pine barrens habitat management burn of 25 acres was conducted at the Sierra Range pine barrens mitigation zone, which is not part of this CMP, but is continuation of past completed mitigation commitment. This habitat burn was completed on 25-MAY-2021 and well met habitat objectives in a zone that has become high profile for habitat specialists such as the Siender Clearwing Moth and Frosted Elfin along with a high density of other listed species including Barrens Buckmoth and Eastern Whip-poor-will.

Sierra Range barrens habitat being treated with prescribed fire. This habitat area, its history, our management, and some of the species found there were highlighted by the US Fish and Wildlife Service Northeast Region in an April post titled. Conservation Targets based on the successful restoration from open small arms range to focal conservation area with many rare species (<u>https://medium.com/usfishandwildlifeservicenortheast/conservation-targets-72a068e6b103</u>).

15

Camp Edwards CMP Permit Compilance and Mitigation – Fiscal Year 2021

Fiscal Year 2022 Planning and Implementation

Army National Guard budgets have been substantially reduced in FY22, impacting facilities and environmental programs throughout the country. However, \$134,000 has been funded specifically for state-listed species conservation projects between dedicated mitigation under the master development plan CMP (\$57,000; MA175180002) and other state-listed species projects (\$77,000; MA175150003), much of which supports the mitigation implementation. Additionally, extra funds are anticipated as we get further into the fiscal year. Other monitoring and habitat restoration funding supports the mitigation implementation requirements. The robust and proactive structure of the master plan CMP was specifically developed to minimize or eliminate negative impacts from low funding years as extensive mitigation has been completed, as reported above, while minimal construction implementation has

Central-western portion of the Sandplain Grassland Mitigation Focal Area within a Frosted Elfin monitoring plot and following 2019 prescribed fire. This habitat supports high species diversity and this location had a new state record moth, Ptycerata buskella, diccumented June, 2021.

occurred under the Permit. As the initial mitigation requirements are met for actions such as major monitoring plan development and primary MILCON acreage requirements, the perpetual requirements funding will predominantly shift to the state-listed species funding tied to the CMP similar to the FY22 funding. Annual expenses after the first five or so years will decrease significantly as MAARNG shifts to focus on annual maintenance/management targets, resource monitoring, and data analysis.

Mechanical implementation of habitat mitigation is expected to be minimal for FY22 as extensive mechanical work has occurred over the last three years of implementation. Significant focus has

gone into planning for more active prescribed burning after challenges posed by COVID-19 and weather conditions. As mapped and described below numerous prescribed burn priorities are planned throughout the training site in various mitigation focal areas to continue restoration and maintenance of pine barrens and sandplain grassland mosaic conditions.

Monitoring and research efforts will be focal for FY22 with the first year of the long-term moth monitoring protocol and two developing box turtle research projects in partnership with UMass Amherst, MassWildlife, and US Fish and Wildlife Service.

· Project Scoping, Design Minimization, and NHESP Review

- MPMG Range Completion of the Environmental Management Commission process will hopefully be completed during the winter of FY22 along with approval and contracting for construction. Submission and completion of all pre-Work required information and tasks will be completed as appropriate and able prior to construction.
- Tango Range Final reporting is in development and preparation for submission to NHESP to close out the construction phase of the project and move into long-term maintenance and use.

- Track and Field (1800 area) Depending on funding the contracting of this project is anticipated during FY22. Contracting and implementation of the approved turtle protection plan and all other pre-Work requirements will be submitted for approval and completed as appropriate and able prior to construction.
- ISBC Range Design consultation and internal review are ongoing with external reviews pending. It is anticipated that the CFMO will contract the turtle protection plan and other required support (e.g., permit compliance letter) given current funding if the project is slated to move forward in FY22 or FY23. Submission and completion of all pre-Work required information and tasks will be completed as appropriate and able prior to construction, to include approval and implementation of turtle protection, design review, etc.
- Species Protection
 - MPMG Range Resumption of turtle protection efforts including silt fence installation and construction support consistent with approved turtle protection plan.
 - Track and Field Initiation and compliance of turtle protection plan consistent with approval if construction project is funded and awarded.
- Species Monitoring
 - a Eastern Box Turtles Ongoing in-house monitoring of box turtles found both opportunistically and during targeted surveys in 2019, 2020, and 2021 near future construction projects as well as those found during planning level surveys. Support for two graduate research projects, which will focus on efforts related to fly larval impacts and prescribed fire impacts. Review of health assessment results and continued coordination with university veterinarians.
 - Bird Surveys Cantonment and training area point count surveys and Eastern Whip-poor-will surveys.
 - Lepidoptera (Moths and Butterflies) Finalizing robust monitoring plan. Implementation of monitoring plan, including vegetation surveys, UV trap sampling, and pilot larval surveys for Barrens buckmoth, depending on resources.

The Wood Lily (Lilium philadelphicum) is not state-listed, but is an early successional habitat associate. It is a good indicator of barrens habitat condition at Camp Edwards and responds well to fire and restoration efforts.

- Habitat Management and Planning (see map below)
 - o Prescribed Fire Priority prescribed burn areas for mitigation include:
 - PBMFA (North): up to approximately 170 acres of the southern portion of Training Area C-14 including previously harvested area and scrub oak shrubland
 - PBMFA (West): Training Area E-2 of which approximately 200 acres of pitch pine scrub oak habitat is unburned in recent history and 61 acres is previously burned (2019).
 - PBMFA (South): Training Areas B-6 and B-7 maintenance fires for pitch pine scrub oak and pitch pine – heath habitat up to approximately 260 acres.

- SGMFA (Primary): approximately 61 acres are prioritized for the more wooded northeastern portion of the mitigation area to facilitate slower conversion to savannah conditions suitable for frosted elfin and similar species while maintaining soil-disturbance sensitive plants.
- Mechanical Restoration
 - Completion of the 27 acre RAW3 harvest contracted in FY21. As described above this
 project focuses on restoration of a large kettle hole frost bottom system and surrounding
 pitch pine scrub oak savannah.
 - Long-term and small scale patch mowing of understory shrubs and small trees will continue in Training Area BA-6 to provide complex structural diversity in support of both training and habitat objectives. Approximately 7 acres will be mowed in FY22.
- Rare species and mitigation outreach: while outreach for rare species is not required or discussed in the CMP, other than contractor education, public outreach on rare species is important for long-term support of conservation efforts at Camp Edwards and elsewhere, including mitigation efforts.
 - o Camp Edwards Tours Base-wide tours of Camp Edwards have been well attended and popular with the public. Mission activities and habitat conservation are the primary foci, including extensive discussion of rare species, habitat needs, ongoing mitigation efforts under the CMP. These tours have garnered notable interest in listed fauna including listed moths and other early successional species. These tours, which were held from August through December, are expected to begin again in the spring and will continue to emphasize endangered species and habitat conservation.
 - Grassland Bird Tours These annual tours were halted for two years due to the

Jake McCumber presenting a tracked Eastern Box Turtle during a Camp Edwards public tour. This old male was opportunistically found on the firing line of Sierra Range during the tour and provided an excellent and popular educational opportunity.

pandemic, but will start egain in FY22 focusing on localized specialties of sandplain grassland habitat at Camp Edwards. These have long been productive outreach with the public and bird enthusiasts for both grasslands habitat conservation and military conservation.

 Public presentations – MAARNG personnel have already given a presentation in FY22 focused on the Barrens Buck Moth to the Upper Cape Naturalist Club. Additional talks and field trips for this group and others (MA Butterfly Club, etc.) are planned for the year highlighting rare species and habitat restoration fundamental to the mitigation efforts of the Permit.

All photos taken 2021 at Camp Edwards; MAARNG Natural Resources and Training Lands Program <u>Cover photos</u> – Top: Barrens Buck Moth (*Hemileuco maio*) female. Bottom (from left): Grasshopper Sparrow (*Ammodromus savannarum*), Eastern Box Turtle (*Terropene corolina*) with radio-transmitter, Frosted Elfin (*Callophrys irus*)

Map of Camp Edwards prescribed fires and mechanical pine barrens and training lands restoration projects from 2019 forward, including upcoming priorities. Designated mitigation areas are also shown.

Camp Edwards CMP Permit Compliance and Mitigation – Fiscal Year 2021 Jamuary 2022

APPENDIX G RARE SPECIES REPORTED TO NATURAL HERITAGE AND ENDANGERED SPECIES PROGRAM

Appendix F - LIST OF RARE SPECIES REPORTED TO NHESP

Quantities shown are not resulting of standardized surveys, and should not be interpreted as population trends

					Ir	ndividuals Re	ported					
Common/Scientific Names	Fed Status ¹⁴	State Status	TY 2012	ТҮ 2013	ТҮ 2014	TY 2015	TY 2016	TY 2017	TY 2018	TY 2019	TY 2020	TY 2021
						BIRDS						
Grasshopper Sparrow ¹³ (Ammodramus savannarum)	-	Т	27	19	26	23	16	15	16	20	34	36
Northern Harrier ¹ (Circus cyaneus)	-	Т	5	8	12	Wintering	Wintering	Wintering	Wintering	Wintering	Wintering	Wintering
Upland Sandpiper ¹³ (Bartramia longicauda)	-	Е	3	5	2	4	9	8	7	12	6	2
Eastern Meadowlark ^{13,16} (Sturnella magna)	-	SC	2	3	1	0	8	3	2	7	14	17
Long-eared Owl ¹ (Asio otus)	-	SC	0	0	1	0	0	0	0	0	0	0
Vesper Sparrow (Pooecetes gramineus)	-	т	1	3	1	0	0	0	0	0	0	0
Whip-poor-will ² (Antrostomus vociferous)	-	SC	201	51	156	96	87	52	110	53	99	136
Bald Eagle ¹ (Haliaeetus leucocephalus)	-	SC	0	0	0	3	0	0	0	0	0	0
REPTILES and AMPHIBIANS												
Eastern Box Turtle (Terrapene carolina carolina)	-	SC	13	1	15	13	38	42	43	58	45	83
Eastern Hog-nosed Snake (Heterodon platirhinos)	-	SC	0	0	0	0	2	3	8	9	1	2

				FINGI ANN		of the Reserva	поп кероп то	r training rec				
					In	ndividuals Re	ported					
Common/Scientific Names	Fed Status ¹⁴	State Status	TY 2012	ТҮ 2013	TY 2014	TY 2015	TY 2016	TY 2017	TY 2018	TY 2019	TY 2020	TY 2021
						ODONAT	ES					
Comet Darner ³ (Anax longipes)	-	-	4	0	5	0	N/A	N/A	N/A	N/A	N/A	N/A
Spatterdock Darner ³ (Aeshna mutata)	-	-	14	0	9	0	N/A	N/A	N/A	N/A	N/A	N/A
						PLANTS	5					
Adder's Tongue Fern ^{4,6} (Ophioglossum pusillum)	-	T	84	542	1467	256	98	247	0	25	646	N/A
Spring Ladies Tresses (Spiranthes vernalis)	-	т	0	0	0	0	0	0	0	0	0	3
Broad Tinker's Weed ^{5,6} (Triosteum perfoliatum)	-	E	332	1230	297	N/A	113	127	0	200	6	N/A
American Arborvitae ⁹ (Thuja occidentalis)	-	E	0	0	0	0	4	N/A	N/A	N/A	N/A	N/A
						BEES						
Walsh's Anthophora ¹⁵ (Anthophora walshii)	-	Е	0	0	0	0	0	5 (1)	0	32 (9)	4	N/A
					BUTT	ERFLIES and	MOTHS					
Buck Moth (Hemileuca maia)	-	SC	0	0	4	13	90	95	0	4	2	74
Pine Barrens Speranza (Speranza exonerata)	-	SC	0	0	0	0	44	13	0	0	0	0
Sandplain Euchlaena (Euchlaena madusaria)	-	SC	0	0	0	0	3	7	0	0	1	0
Heath Metarranthis (Metarranthis pilosaria)	-	SC	0	0	0	0	1	1	0	0	0	0
Melsheimer's Sack Bearer (Cicinnus melsheimeri)	-	Т	0	0	0	0	2	0	0	0	7	0

					Ir	ndividuals Re	ported					
Common/Scientific Names	Fed Status ¹⁴	State Status	TY 2012	ТҮ 2013	TY 2014	TY 2015	TY 2016	TY 2017	TY 2018	TY 2019	TY 2020	TY 2021
Gerhard's Underwing (Catocala herodias)	-	SC	0	0	0	0	33	10	0	0	2	0
Pine Barrens Zale (Zale lunifera)	-	SC	0	0	0	0	13	8	0	0	0	0
Barrens Dagger Moth (Acronicta albarufa)	-	т	0	0	0	0	1	0	0	0	0	0
Chain-dotted Geometer (Cingilia catenaria)	-	SC	0	0	0	0	0	0	0	1	0	0
Drunk Apamea (Apamea inebriata)	-	SC	0	0	0	0	1	0	0	0	0	0
Pink Sallow (Psectraglaea carnosa)	-	SC	0	0	0	0	9	5	0	0	0	0
Pink Streak (Dargida rubripennis)	-	Т	0	0	0	0	25	0	0	0	3	1
Collared Cycnia (Cycnia collaris)	-	Т	0	0	0	0	0	1	0	11	33	200
Coastal Heathland Cutworm (Abagrotis benjamini)	-	SC	0	0	0	0	0	1	0	0	0	0
Woolly Gray (Lycia ypsilon)	-	Т	0	0	0	0	0	2	0	0	0	0
Water-willow Stem Borer (Papaipema sulphurata)	-	т	0	0	0	0	0	1	0	0	0	0
Waxed Sallow Moth (Chaetaglaea cerata)	-	SC	0	0	0	0	0	2	0	0	0	0
Frosted Elfin ¹² (Callophrys irus)	-	SC	0	0	0	0	5	5	5	TBD	25	57
Slender Clearwing Sphinx (Hemaris gracilis)	-	SC	0	0	0	0	0	0	0	0	5	3

					Ir	ndividuals Re	ported					
Common/Scientific Names	Fed Status ¹⁴	State Status	TY 2012	TY 2013	TY 2014	TY 2015	TY 2016	TY 2017	TY 2018	TY 2019	TY 2020	TY 2021
						CRUSTACE	ANS					
Agassiz's Clam Shrimp ¹⁰ (Eulimnadia agassizii)	-	Е	0	0	0	1	0	6	38	9	3	5
American Clam Shrimp [^] (Limnadia lenticularis)	-	SC	0	0	0	0	0	0	0	0	0	3
						МАММА	LS					
Northern Long-Eared Bat ^{7,8} (Myotis septentionalis)	т	Е	0	0	8	22 (2)	15 (1)	2	1	3	1	TBD
Little Brown Bat ⁷ (Myotis lucifugus)	UR	E	0	0	4	40	22	4	2	6	2	TBD
Tricolored Bat ⁷ (Perimyotis subflavus)	UR	E	0	0	11	11	7	3	2	3	1	TBD
Eastern Small-Footed Bat ⁷ (Myotis leibii)	UR	E	0	0	0	0	0	0	0	1	1	TBD

¹ NHESP is only accepting reports of nesting raptors, rather than opportunistic observations of individuals. Reports are provided as relevant, but common wintering birds or migrants are not individually tracked or reported (e.g., Northern Harrier).

² As of TY 2016, quantities only reflect the results of annual survey routes during May, after totaling the minimum number (between two observers) heard at each site. In prior years, the number shown reflects the quantity reported to NHESP, which may include multiple survey windows and repeated counts. Due to Covid-19 concerns, 2020 routes were not run in duplicate, and the number represents the total number of individual birds heard calling throughout the routes.

³ Comet and Spatterdock Darner are no longer on NHESP's rare species list. Also, Odonate surveys were suspended after TY 2015.

⁴ Several known Ophioglossum sites could not be surveyed in TY 2016 due to a lack of cease-fire agreement with the off-base Monument Beach Shooting Club. 2019 numbers are likely under representative, as surveys occurred late in the season. In 2020 Ophioglossum was surveyed earlier in the year in order to get an accurate count.

⁵ Actual 2019 numbers may be as few as 82, MAARNG staff is now studying the genetics of *Triosteum perfoliatum* and *T. aurantiacum* due to difficulty in accurately differentiating the two species. Once the genetics project is completed, 2020 numbers will be reported.

⁶ In 2018, only sites with historic records and no recent records were surveyed, and this should not be interpreted as a loss of rare plants between 2017 and 2018.

⁷ Acoustic monitoring collects "call sequence" data and the true number of individuals is unknown. Numbers in the table reflect the number of survey sites with acoustic detections confirmed through manual call vetting. Numbers are reported to NHESP, but not tracked by them due to current uncertainty in using acoustic identifications. TY 2020 data is still being processed, these numbers are to be determined at a later date (TBD).

⁸ Number in parentheses is captured individuals trackable by NHESP due to species identification confirmation versus acoustic data.

⁹ NHESP is not interested in tracking this population, as it is likely of anthropogenic origin (pers. comm. with State Botanist, Bob Wernerehl).

¹⁰ Numbers represent only locations where species was found and ID confirmed by either NHESP Aquatic Ecologist or trained MAARNG staff.

¹¹ Moths were extensively surveyed under contract with the Lloyd Center for the Environment between 2016 and 2017. There were no surveys in 2018, and MAARNG staff is not recording flight records of Barrens Buckmoth, as they are ubiquitous around the Training Area/Reserve. 2019 quantities represent individuals or groups of individuals (a group of Barrens Buckmoth caterpillars on a single leaf is counted as one, as are a pair of Unexpected Cycnia caterpillars sharing the same butterflyweed plant).

¹² MAARNG staff did not perform surveys for Callophrys irus in 2019, but facilitated USFWS surveys. Results are pending, but USFWS staff found Frosted Elfins across a wider area than was previously known.

¹³ Grassland bird numbers represent individual territories observed in a given year rather than the total number of birds observed throughout repeated surveys as was reported in past years (prior to the TY 2019 SOTRR). Upland Sandpiper counts exclude known females, but include unknown birds. Also, the numbers reported in annual reports TY 2015 and earlier included birds found on the Coast Guard airfield, which is not reported by MAARNG Natural Resources. Due to these changes, past year quantities may be different from prior versions of Appendix F, but now reflect the population more accurately.

¹⁴ "UR" indicates a species is currently under review for listing on the federal Endangered Species Act.

¹⁵ MAARNG contracted a targeted survey for Anthophora walshii in 2019 after an exploratory bee survey in 2017. The first number represents the number of flying/foraging records, and in parentheses the records of nesting activity. Unconfirmed nests were not counted.

¹⁶ Species added to MA Endangered Species List in TY 2020. Observation quantities included for prior years, but would not have been officially reported to NHESP.

APPENDIX H ENVIRONMENTAL PERFORMANCE STANDARDS VIOLATIONS HISTORY

		EPS VIOLATIO HISTORY	
TRAINING YEAR	REPORTED VIOLATION	EXPLANATION OF VIOLATION	CORRECTIVE ACTION
TY 2021	Range Performance EPS (EPS 19)	Additional targets were placed on the 25-meter line on Sierra Range. Transition firing was conducted on Echo Range. No consultation for approval was conducted with Camp Edwards Plans and Training, the Environmental & Readiness Center and the EMC's Environmental Officer. The MAARNG reported the nonconformance to the EMC on February 18, 2021.	Full-time Range Control staff were counseled on the importance of following established processes of consultation and approval for any non- standard training event; the Range Control maintenance manager was directed that he shall not alter or install additional targets on a range unless there is an approval in writing or the range is being prepared for an approved proof of concept for a future training event; OIC formalized non-standard training requests (exceptions to policy) in a Standard Operating Procedure; full-time Range Control staff was retrained; and those personnel involved in approving the non-standard training were given written counseling. In addition to corrective actions instituted by the MAARNG, the EMC required that the full-time Range Control staff undergo annual training on EPS 19.0 and the BMPs and OMMPs; newly assigned Range Control staff undergo training on EPS 19.0 and the BMPs and OMMP prior to being given authority for operational control of the small arms ranges; documenting the corrective actions and additional EMC requirements in Camp Edwards Operations and Training Regulation 350-2 and forwarding that to the EMC for review.
TY 2020	Training Area Fire Management EPS (EPS 11)	Three burn barrels (55- gallon drums) were found at SVLs 1 and 2. The MAARNG reported the nonconformance to the EMC on October 25, 2019.	All full-time and Mobilization Day staff are instructed to review Training Area Clearing processes and be re-briefed on guiding regulations and standards that apply to the Training Area/Reserve. Clear and obvious signage stating that open burning is prohibited has been posted at Range Control. The Camp Edwards Operations and Training Regulation 350-2 has been updated to clearly state the requirement for clearing training areas and that open burning is prohibited on Camp Edwards.
TY 2019	General Performance Standard	Three L600 M119 whistling booby trap simulators were used; they are not on the approved munitions list and were not authorized for use. The MAARNG reported a nonconformance to the EMC on September 17, 2019.	All levels: command, units training and the ASP will be provided a list of items permanently and temporarily authorized for a particular training event. The ASP will make a change in their ammunition reservation program that will not allow unauthorized ammunition or simulators to be reserved. Camp Edwards Range Control will do a final munition check as units check in for their reserved training area or venue.

TY 2018	Rare Species EPS (EPS 3)	A road puddle containing state-listed Agassiz clam shrimp was filled by a unit training at Dig Site 1. The MAARNG forwarded a formal notice of violation to the EMC on May 16, 2018.	Camp Edwards will, after relocation of the clam shrimp and in concert with the CMP, fill the puddles, use signage to avoid infilling of relevant puddles, and educate users as to how they are supposed to coordinate with Camp Edwards before taking actions outside of their training plan while in the Training Area/Reserve.
TY 2017	None		
TY 2016	General Performance Standard	Eight thousand paintball rounds were fired by a unit on the IMT range (Dig Site 3) without permission or prior coordination. The MAARNG forwarded a formal notice of violation to the EMC on November 9, 2015.	Unit soldiers cleaned and cleared the area of debris, discussion of the seriousness of the violation with the Unit Commander and told of actions needed for compliance when wanting to train with any unapproved munition. Camp Edwards staff conducted a Range Officer in Charge and Range Safety brief audit to validate content and effectiveness. Range Control staff will conduct assessments of units while they are training in the Training Area/Reserve to ensure activities are within established performance standards.
TY 2015	Vehicle Performance Standard EPS (EPS 17)	A pickup truck was driven into, off road, and placed in Training Area BA-7 as a temporary training aid. The MAARNG forwarded a formal notice of violation to the EMC on June 5, 2015.	Camp Edwards staff conducted a Range Officer in Charge and Range Safety brief audit to validate content and effectiveness. Range Control staff will conduct assessments of units while they are training in the Training Area/Reserve to ensure activities are within established performance standards.
TY 2014	None		
TY 2013	None		

		EPS VIOLATIO	SNC
		HISTORY	
TRAINING	REPORTED	EXPLANATION OF	CORRECTIVE
YEAR	VIOLATION	VIOLATION	ACTION
TY 2012	Small Arms	On November 7, 2011, the	The MAARNG submitted a Response Packet to
	Range EPS	EMC issued a notice for	the EMC in early December 2011 which included:
		failure to remove water from	1) a Notification Protocol should it not be able to
	(EPS 19)	bullet traps on all three	comply with a requirement of the OMMPs; 2) a
		operationally active small	STAPP [™] Range Tarp Cover Project Description;
		arms ranges within the	3) Water Removal Contracting and Budgeting
		prescribed time periods on	provisions; 4) creation of a Camp Edwards
		multiple occasions during TY	Sustainable Range Program Working Group;
		2011. The EPA also cited the	and 5) a Standard Operating Procedure for
		MAARNG for a violation for	STAPP [™] System Range Maintenance Procedures
		the same failure.	and Inspections.