STATE OF THE RESERVATION REPORT

FINAL TRAINING YEAR 2018 . CAMP EDWARDS

Final Annual State of the Reservation Report, Camp Edwards, Training Year 2018 February 2019

Prepared by: The Massachusetts National Guard Environmental & Readiness Center Bldg. 3468 Beaman Street Camp Edwards, MA 02542 Phone: 508-968-5143 www.EandRC.org

PREFACE

The Annual *State of the Reservation Report* describes the nature and extent of military training and other activities taking place in the Camp Edwards Training Area/Upper Cape Water Supply Reserve and the status of the Massachusetts Army National Guard's compliance with environmental laws, regulations and the Environmental Performance Standards, a set of 19 standards established in Chapter 47 of the Acts of 2002 guiding military and civilian usage of the Camp Edwards Training Area/Upper Cape Water Supply Reserve. Ultimately, the goal of the Annual Report is to illustrate that military training can occur in the Camp Edwards Training Area/Upper Cape Water Supply Reserve in a manner that is compatible with the Environmental Performance Standards.

The Annual *State of the Reservation Report* covers the Massachusetts National Guard's Training Year 2018, which ran from October 1, 2017 to September 30, 2018; therefore, information provided in this report generally encompasses an individual training year rather than calendar year. The report's primary focus is the review of the Massachusetts Army National Guard's environmental programs relative to environmental compliance. Each year, the report provides information on military training levels, range area usage, resource management activities, environmental indicators for training activities, and coordination among other activities and projects, such as the regional water supply and the remediation program activities. Cape Cod Air Force Station and the US Coast Guard Communications Station are both located within the boundary of the Upper Cape Water Supply Reserve; however, they are not subject to Chapter 47 of the Acts of 2002 and the Environmental Performance Standards (Chapter 47 of the Acts of 2002, Section 15).

The report also provides information on environmental reviews for proposed Massachusetts National Guard and other projects within the Upper Cape Water Supply Reserve.

This report, established by the Massachusetts Environmental Policy Act process and required by state law (Chapter 47 of the Acts of 2002), is the result of many years of environmental reviews and submissions by the Massachusetts Army National Guard.

The Annual Report is structured as follows:

Section 1, Introduction, discusses the structure of Joint Base Cape Cod and the environmental management structure pertaining to activities in the northern training areas of Camp Edwards.

Section 2, Small Arms Ranges and Military Training Activities, provides an update on the return to live fire at the Small Arms Ranges at Camp Edwards and associated activities. This section also provides information on military training that occurred in the Reserve during Training Year 2018. Data is provided on the levels of training in the various training areas in the Reserve and range usage, as well as at the various training support area facilities in the Cantonment Area on Camp Edwards.

Section 3, Environmental Program Management, focuses on environmental management programs operated by the Massachusetts Army National Guard in the Reserve and program compliance with the Environmental Performance Standards for the Reserve for the training year.

Section 4, Remediation Program Activities, provides a summary of remediation activities undertaken in the Reserve during the training year by the Installation Restoration Program and the Impact Area Groundwater Study Program.

Section 5, Miscellaneous Military and Civilian Activities and Environmental Program Priorities, provides information on major activities undertaken during Training Year 2018 that may not be directly related to a

Massachusetts Army National Guard environmental management program, actions in the Reserve, or specific Environmental Performance Standards for the Reserve.

The Annual Report is the culmination of a year-long effort by the military and civilian employees of the Massachusetts Army National Guard, Training Site Camp Edwards, the Environmental & Readiness Center, the Natural Resource Program, and the Environmental Management Commission to provide valuable information on the state of the Reserve to interested stakeholders and the community at large.

Annual State of the Reservation Report Key Terms

Upper Cape Water Supply Reserve

The Upper Cape Water Supply Reserve was established by Chapter 47 of the Acts of 2002 as public conservation land dedicated to three primary purposes: water supply and wildlife habitat protection; the development and construction of public water supply systems, and, the use and training of the military forces of the commonwealth; provided that, such military use and training is compatible with the natural resource purposes of water supply and wildlife habitat protection. It comprises—and for the purposes of this report, may be synonymous with—Camp Edwards' 15,000-acre northern training area. Cape Cod Air Force Station and US Coast Guard Communications Station Boston are both located within the boundary of the Upper Cape Water Supply Reserve; however, they are not subject to the Environmental Performance Standards.

Camp Edwards Training Area

The Massachusetts Army National Guard Camp Edwards Training Site (Camp Edwards Training Area) is the major training area for Army National Guard soldiers in the Northeast. It is approximately 15,000 acres located on the northern portion of Joint Base Cape Cod. At Camp Edwards, soldiers practice maneuvering exercises, bivouacking, and use the small arms ranges. The Upper Cape Water Supply Reserve also is located on the 15,000 acres of Camp Edwards. It comprises—and for the purposes of this report, may be synonymous with—Camp Edwards' 15,000-acre northern training area.

Environmental Performance Standards

The Environmental Performance Standards (Appendix A) are a list of requirements, or standards for performance, that guide both military and other users in the protection of Camp Edwards' natural and cultural resources and the groundwater beneath the Reserve. The Environmental Performance Standards are based in large part on existing federal, state, and Department of Defense regulations. In some cases, the protections offered by the performance standards are more stringent than those offered by other regulations. These standards apply to the Camp Edwards Training Area at Joint Base Cape Cod. Although Cape Cod Air Force Station and the US Coast Guard Communications Station are located within the boundary of the Upper Cape Water Supply Reserve, the Environmental Performance Standards do not apply to them as they were excluded by Chapter 47 of the Acts of 2002.

Training Year

A training year runs from October 1 to September 30. Information found in the annual *State of the Reservation Report* is compiled by training year. This *Annual State of the Reservation Report* is for Training Year 2018 (October 1, 2017 – September 30, 2018).

Training Support Area

There are separate facilities and equipment that can simulate live military training; these are grouped under the Training Support Area. The majority of the training activities associated with these facilities are conducted in the Cantonment Area of Camp Edwards. Training Support Areas include Kelley Tactical Training Base, the Calero Mobile Military Operations on Urban Terrain Site, the Engagement Skills Trainer and the Virtual Convoy Operations Trainer.

Small Arms Ranges

Small arms ranges allow live-fire qualification training with weapons of a small caliber, i.e. handgun, rifle, shotgun, or machine gun. Small arms training is designed to train a soldier to be "qualified" in the use and maintenance of his or her assigned weapon. There are six active small arms ranges on Camp Edwards, which the Massachusetts Army National Guard uses for weapons familiarization, weapons zeroing (essentially customizing it to give the soldier a more accurate shot) and qualification.

Impact Area

The 2,200 acre Impact Area is located in the center of the Upper Cape Water Supply Reserve/Camp Edwards Training Site. All the small arms ranges are focused around the perimeter of the Impact Area, and all small arms range firing is pointed towards the Impact Area. The 330-acre Central Impact Area is located within the Impact Area; it was the primary target area for artillery, mortar and other firing activities from the early 1900s until firing ceased in 1997. The Central Impact Area contains critical habitat for several state-listed species.

Cantonment Area

The southern 5,000-acre, developed area of Joint Base Cape Cod with roads, utilities, office and classroom buildings, training support areas, and housing. There are numerous federal, state and county entities located there.

Environmental Protection Agency Administrative Order

In February 1997, the Environmental Protection Agency utilized its powers under the Safe Drinking Water Act to issue the first Administrative Order concerning Camp Edwards. There are four administrative orders in total; Administrative Order #2 was issued in April 1997 to the National Guard Bureau and the Massachusetts National Guard. It required that certain training activities (artillery and mortar firing) cease pending the completion of environmental investigations at the training ranges and Impact Area. As small arms ranges and other training activities are brought back on-line by the Massachusetts National Guard, they must, in some cases, petition EPA to amend Administrative Order #2 to allow the training.

Referenced Documents

The Annual *State of the Reservation* report encompasses a large amount of information and makes reference to many letters, reports and other documents that were developed over the course of Training Year 2018. Many of these are available on-line and any letter, document or report referenced in the *Annual State of the Reservation Report* is available by contacting Emily Kelly, Community Involvement Specialist, Massachusetts National Guard Environmental & Readiness Center, 508-968-5146, emily.d.kelly2.nfg@mail.mil.

FORWARD

The Massachusetts Army National Guard at Camp Edwards is pleased to present the State of the Reservation Report for Training Year 2018 for the Camp Edwards Training Area/Upper Cape Water Supply Reserve (Reserve).

During Training Year 2018, a variety of actions were undertaken to ensure the continued compatible environmental use of the Training Area/Reserve. A continuing priority for the Massachusetts Army National Guard; actions and projects undertaken by the Guard are designed and completed with the environment in mind with those actions documented in this report.

Camp Edwards began the design and environmental review for a new \$11.5 million Multi-Purpose Machine Gun Range planned for construction at an existing range (KD Range) on Camp Edwards. This required range an undertaking will require close coordination between the Camp, Natural Resources staff, the Environmental Management Commission, and state agencies to ensure it is as environmentally protective as possible while still providing the necessary and required training. Camp Edwards's ranges are operated in accordance with an Operation, Maintenance and Monitoring Plan (OMMP) or Standard Operating Procedure (SOP) and Range Management Plan. The focus of these plans is to ensure that safe operations occur while still monitoring and being protective of the environment. Any future ranges, like the current ranges, will be developed to be as environmentally protective as possible while still providing the necessary and required training.

The Guard is also proposing a change to the Environmental Performance Standards (EPSs). The proposed adjustment is reflective of the many years of EPS implementation and continual improvement of training and environmental practices that allow for compatible military training at Camp Edwards. The change would modify EPS 15.3: Fuel Management, to allow refueling in the Reserve under certain conditions for habitat management, contract work and training purposes. Similar to the small arms ranges, a Standard Operating Procedures has been developed with training and environmental protection as its core focus. The Guard is working in coordination with the Environmental Management Commission and plans to formally request the change to the EPS late in Training Year 2019.

Within the Natural Resources and Integrated Training Area Management (ITAM) program, activities focused on supporting training and conservation of the resources on Camp Edwards. The ITAM program continues to coordinate and work with the Camp Edwards' trainers, Range Control, and the Environmental Management Commission to address compatible training needs. One example of programmatic activities during TY 2018 is the repair of large puddles impeding the use of Cat and Herbert roads in the Reserve for training and other activities. The puddles support Agassiz's Clam Shrimp (*Eulimnadia agassizii*), a state listed endangered species. The Natural Resources Office worked with the Natural Heritage and Endangered Species Program to create a Conservation and Management Plan, which outlines a plan for habitat creation, clam shrimp relocation, and monitoring to provide for a net benefit to the species and allow for necessary road repairs.

Sustainable range use and training while still being protective of our environment is still the core principle of using the Upper Cape Water Supply Reserve/Camp Edwards Training Area. To this end, Camp Edwards Head Quarters has reinitiated its Sustainable Range Program where training needs and environmental concerns are coordinated internally and with the Environmental Management Commission.

The Environmental & Readiness Center will continue to be the Adjutant General's environmental management element at Camp Edwards. Questions and comments regarding the Training Year 2018 *State of the Reservation Report* should be addressed to: Dr. Michael Ciaranca, Deputy Director, Massachusetts National Guard Environmental & Readiness Center, Building 3468, Beaman Street, Camp Edwards, MA, 02542, (508) 968-5154, michael.a.ciaranca.nfg@mail.mil or Mr. Leonard Pinaud, Environmental Officer, Environmental Management

Commission, Building 3468, Beaman Street, Camp Edwards, MA, 02542, (508) 946-2871, leonard.pinaud@mass.gov.

For more information, please access the Environmental & Readiness Center's web site at www.massnationalguard.org/ERC/index.htm. Please take the opportunity to provide us feedback on this important document. Regulatory and community feedback help ensure the future viability and environmental integrity of this piece of land we refer to as Camp Edwards on Joint Base Cape Cod.

TABLE OF CONTENTS

PREFACE		1
FORWARD		.IV
TABLE OF C	CONTENTS	IVI
LIST OF TAI	BLES	VIII
LIST OF FIG	URES	.IX
LIST OF GR	APHS	X
ACRONYM	S	.XI
SECTION 1	INTRODUCTION	1
1.0	Introduction	1
1.1	Joint Base Cape Cod Structure	1
1.2	Environmental Management Structure	3
		-
SECTION 2	SMALL ARMS RANGES AND MILITARY TRAINING ACTIVITIES	5
2.0		Э Г
2.1	Camp Edwards Training Area/Upper Cape Water Supply Reserve	5
2.2	Range Update	13
2.3	Science Advisory Ad Hoc Committee	13
2.4	Tango, Juliet and Kilo Ranges	13
2.5	Sierra and India Ranges	15
2.6	Lima Range	17
2.7	Range Usage Data	17
2.8	Off-Site Training	24
2.9	Simulated Munitions	24
2.10	Pyrotechnics	25
2.11	M69 Hand Grenade Simulator	25
2.12	Soldier Validation Lane	26
2.13	Echo Range	27
2.14	EPS 15.3.3 Field Refueling	29
2.15	Multi-Purpose Machine Gun Range	30
SECTION 3	ENVIRONMENTAL PROGRAM MANAGEMENT	31
3.0	Introduction	31
3.1	Groundwater Resources Management	31
3.2	Wetlands and Surface Water Management	35
3.3	Rare Species Management	37
3.4	Soil Conservation Management	44
3.5	Vegetation Habitat and Wildlife Management	44
3.6	Fire Management	<u>⊿9</u>
37	Past Management	50
3.8	Air Quality Management	51
3.9	Noise Management	51
310	Stormwater Management	52
3.10	Wastewater Management	52 52
3.11	Solid Waste Management	52 52
312	Hazardous Matorials Managoment	53
5.15	nazaraoos marenais management	55

TABLE OF CONTENTS

3.14	Hazardous Waste Management	53
3.15	Vehicle Management	54
3.16	General Use and Access Management	54
3.17	Cultural Resources Management	54
3.18	EPS Violations	55
3.19	Mitigation	55
SECTION 4	REMEDIATION PROGRAM ACTIVITIES	57
4.0	Introduction	57
4.1	Investigation and Remediation Programs	57
4.2	Installation Restoration Program Activities in the Reserve	59
4.3	Impact Area Groundwater Study Program Activities	59
SECTION 5	MISCELLANEOUS MILITARY AND CIVILIAN ACTIVITIES AND ENVIRONMENTAL PROGRAM PRIORITIES	61
5.0	Miscellaneous Military Activities	51
5.1	Projects at Camp Edwards	51
5.2	Joint Base Cape Cod Executive Director	51
5.3	Miscellaneous Civilian Activities	51
5.4	Environmental Program Priorities	52
APPENDIX	A ENVIRONMENTAL PERFORMANCE STANDARDS	67
APPENDIX	B LIST OF CONTACTS	81
APPENDIX	C FIRING RANGE AND SOLDIER VALIDATION LANE INFORMATION	85
APPENDIX	D ENVIRONMENTAL LAWS AND REGULATIONS 12	23
APPENDIX	E WATER SUPPLY INFORMATION	29
APPENDIX	F RARE SPECIES REPORTED TO NATURAL HERITAGE AND ENDANGERED	
	SPECIES PROGRAM	17
APPENDIX	G ENVIRONMENTAL PERFORMANCE STANDARDS VIOLATIONS HISTORY 22	23

LIST OF TABLES

TABLE 2-1	Overview Of Training Use - TY 2018	12
TABLE 2-2	Training Use History	13
TABLE 2-3	Training Area Use - TY 2018	20
TABLE 2-4	Training Area Use History	21
TABLE 2-5	Training Area Use - TY 2018	22
TABLE 2-6	Training Support Area Use History	23
TABLE 3-1	List Of Rare Species Reported to NHESP	

LIST OF FIGURES

FIGURE 1-1	Map of Joint Base Cape Cod
FIGURE 1-2	Utility Easements and Leases
FIGURE 2-1	Camp Edwards Training Area and Ranges
FIGURE 2-2	Personnel Usage by Training Area in the Reserve, TY 2009 – TY 20187
FIGURE 2-3	Ten Year Personnel Use by Training Area in the Reserve, TY 2009 – TY 2018
FIGURE 2-4	Daily Usage Per Training Area in the Reserve, TY 2009 – TY 2018
FIGURE 2-5	Ten Year Daily Usage by Training Area in the Reserve, TY 2009 – TY 201810
FIGURE 2-6	SVL Objective Locations
FIGURE 3-1	Well Locations
FIGURE 3-2	Otis ANGB Grassland Management Area56
	-
FIGURE 4-1	JBCC Groundwater Plume Map58
FIGURE 4-2	IAGWSP Wells Installed During TY 2018
	~
FIGURE 5-1	Eversource Switching Station Area61

LIST OF GRAPHS

GRAPH 2-1	Average Personnel Use By Training Area For TY 2009 to TY 2018	11
GRAPH 2-2	Average Days Used By Training Area, TY 2009 to TY 2018	12
GRAPH 2-3	STAPP [™] System Water Pumping	15
GRAPH 2-4	Lead Ammunition Use – Tango, Juliet and Kilo Ranges	18
GRAPH 2-5	Copper Ammunition Use – Sierra and India Ranges	19
GRAPH 2-6	M781 40mm Training Round Use – Lima Range	19
GRAPH 2-7	Simulated Munitions Use	25
GRAPH 2-8	Pyrotechnics Use In The Reserve History	25
GRAPH 2-9	M69 Hand Grenade Simulator Use	26
GRAPH 2-10) Soldier Validation Lane Use	27
GRAPH 3-1	Precipitation Recorded	32
GRAPH 3-2	U.S. Geological Survey Monitoring Well	33
GRAPH 3-3	Daily Water Withdrawal, J-Well and Water Cooperative	34
GRAPH 3-4	Camp Edwards Deer Harvest	47
GRAPH 3-5	Camp Edwards Turkey Harvest	48
GRAPH 3-6	Prescribed Fire Accomplishment within the Reserve	50
GRAPH 3-7	Wastewater Treatment Plant Discharge	52
GRAPH 3-8	Hazardous Waste Disposal – Camp Edwards	54

ACRONYMS

AFCEC	Air Force Civil Engineer Center
AFS	Air Force Station
angb	Air National Guard Base
AR	Army Regulation
ATV	All Terrain Vehicle
BMP	Best Management Practice
BP	Battle Position
CAA	Clean Air Act
CAC	Community Advisory Council
CER	Camp Edwards Regulation
CERCLA	Comprehensive Environmental Response, Compensation, and Liability Act
CFR	Code of Federal Regulation
CIA	Central Impact Area
CMP	Conservation and Management Plan
CMR	Code of Massachusetts Reaulations
CPQC	Combat Pistol Qualification Course
CS	Chemical Spill
CSE	Comprehensive Site Evaluation
DCR	Department of Conservation and Recreation
DFG	Department of Fish and Game
DFW	Division of Fisheries and Wildlife
DNA	Deoxyribonucleic acid
DoD	Department of Defense
	·
E&RC	Environmental & Readiness Center
EDB	Ethylene Dibromoide
EMC	Environmental Management Commission
EPA	Environmental Protection Agency
EPS	Environmental Performance Standard
FAA	Federal Aviation Administration
FS	Fuel Spill
HMMWV	High Mobility Multipurpose Wheeled Vehicle
IAGWSP	Impact Area Groundwater Study Program
IED	Improvised Explosive Device
IMT	Individual Movement Techniques
INRMP	Integrated Natural Resources Management Plan
IRP	Installation Restoration Program
ISWM	Integrated Solid Waste Management Site
ITAM	Integrated Training Area Management

Acronyms, continued

JBCC	Joint Base Cape Cod
JLUS	Joint Land Use Study
LQG	Large Quantity Generator
MAANG	Massachusetts Air National Guard
MAARNG	Massachusetts Army National Guard
MassDEP	Massachusetts Department of Environmental Protection
MassDOT	Massachusetts Department of Transportation
MCP	Massachusetts Contingency Plan
MEC	Munitions and Explosives of Concern
MESA	Massachusetts Endangered Species Act
MGL	Massachusetts General Law
MIPAG	Massachusetts Invasive Plants Advisory Group
mm	millimeter
MMR	Massachusetts Military Reservation
MMRP	Military Munitions Response Program
MPMG	Multipurpose Machine Gun Range
-	
NBC	Nuclear-Biological-Chemical
NHESP	Natural Heritage and Endangered Species Program
NLEB	Northern Long-eared Bat
OEA	Office of Economic Adjustment
OMMP	Operation, Maintenance and Monitoring Plan
20	
	Pollution Prevention
PAVEPAVV	5 Precision Acquisition Venicle Entry – Phased Array Warning System
ppb	parts per billion
ppm	parts per million
PAN	Percussion Actuated Neutralizer
אַרוא	Poyal Demolition Explosive
	Royal Demontal Consideration
	Record of Environmental Consideration Remedial Investigation / Feasibility Study
	Percent of Action
	Record of Action Reserve Officers Training Corps
	Persional Training Institute
KII	Regional framing insinole
SAC	Science Advisory Council
SEMASS RR	F Southeastern Massachusetts Resource Recovery Facility
SHPO	State Historic Preservation Office
SPVS	Solar Photovoltaic System
SR/ES	Source Registration/Emissions Statement
SVL	Soldier Validation Lane

Acronyms, continued

- TSA Training Support Area
- TTB Tactical Training Base
- TY Training Year
- UAS Unmanned Aerial System
- URI University of Rhode Island
- USCG United States Coast Guard
- USFWS United States Fish and Wildlife Service
- USGS United States Geological Survey
- UTES Unit Training and Equipment Site
- UTM Ultimate Training Munition
- WPA Wetlands Protection Act
- WWTP Waste Water Treatment Plant
- XRF X-Ray Fluorescence

SECTION 1 INTRODUCTION

1.0 INTRODUCTION

This section of the Annual *State of the Reservation Report* (Annual Report) provides information on Joint Base Cape Cod (JBCC) and the environmental management structure overseeing activities in the approximately 15,000 acre Camp Edwards Training Area/Upper Cape Water Supply Reserve (Reserve).

1.1 JOINT BASE CAPE COD STRUCTURE

Joint Base Cape Cod is a multi-service military installation and is home to the Massachusetts Air National Guard's (MAANG) Otis Air National Guard Base (ANGB), the United States Coast Guard's (USCG) Base Cape Cod, the U.S. Air Force's Cape Cod Air Force Station (AFS), the Massachusetts Army National Guard's (MAARNG) Camp Edwards, and the Department of Veterans Affairs Cemetery. Joint Base Cape Cod is located in the upper western portion of Cape Cod, immediately south of the Cape Cod Canal in Barnstable County, Massachusetts. It includes parts of the towns of Bourne, Mashpee and Sandwich, and abuts the Town of Falmouth. Joint Base Cape Cod covers nearly 21,000 acres – approximately 30 square miles (Figure 1-1).

The Massachusetts Army National Guard's components of JBCC comprise two primary land use zones. The Camp Edwards Training Area comprises approximately 14,400 acres of the Reserve. The remaining Camp Edwards military-controlled area of JBCC lies in the southern portion, or Cantonment Area.

The MAARNG and MAANG are part of the Commonwealth of Massachusetts Military Division. However, federal law largely dictates their activities, make-up, training, and functions. For example, most of the day-to-day activities conducted at JBCC by the National Guard, including annual and weekend training, are federal military activities funded by the federal government. In conducting federal military activities, the National Guard is required by federal law to follow Department of Defense (DoD) regulations, Army regulations, Air Force instructions, and applicable federal and state laws and regulations.

There are three major facilities in the northern portion of JBCC that are not on land under the operational control of the Massachusetts National Guard. Cape Cod AFS, which includes the PAVE PAWS ballistic missile early warning radar system, is located on an 87-acre parcel of land on the northwest corner of the Reserve. The USCG's Communications Station is located on a 542-acre parcel along the northeastern side of the Reserve. A Barnstable County Correctional Facility that opened in 2004 is located on a 29-acre parcel of land just north of Connery Avenue, just outside the southern edge of the Reserve. The locations of these facilities are shown in Figure 1-1. Because these facilities are located on land not under the control of the Massachusetts National Guard, and because the Environmental Performance Standards (EPSs) (see Appendix A) established through Chapter 47 of the Acts of 2002 do not apply to these organizations and facilities, detailed information concerning activities at these facilities is not included in the Annual Report. Questions pertaining to activities at Cape Cod AFS and the Coast Guard Communications Station should be addressed to the persons listed in Appendix B of this report.

Figure 1-1 Map of Joint Base Cape Cod

The Commonwealth of Massachusetts has issued three utility easements on its state-owned property in the Reserve: an electrical power line easement (Eversource), a natural gas pipeline easement (National Grid), and a natural gas pipeline easement (Algonquin - that partially overlays the National Grid easement). Additionally, there are easements issued to the Upper Cape Regional Water Supply Cooperative and to the Bourne Water District. The locations of the utilities and facilities are shown in Figure 1-2.

1.2 ENVIRONMENTAL MANAGEMENT STRUCTURE

1.2.1 Environmental Management Commission

Chapter 47 of the Acts of 2002 established the Environmental Management Commission (EMC), consisting of the Commissioner of the Department of Fish and Game (DFG), the Commissioner of the Massachusetts Department of Environmental Protection (MassDEP), and the Commissioner of the Department of Conservation and Recreation (DCR). The EMC oversees compliance with and enforcement of the EPSs in the Reserve, coordinates the actions of environmental agencies of the Commonwealth in the enforcement of environmental laws and regulations in the Reserve, as appropriate, and facilitates an open and public review of all activities in the Reserve. The legislation also states that the environmental agencies on the EMC retain all their respective, independent enforcement authority.

Chapter 47 of the Acts of 2002 also directed that the EMC be assisted by two advisory councils. The Community Advisory Council (CAC), consisting of 15 members, assists the EMC by providing advice on issues related to the protection of the water supply and wildlife habitat within the Reserve. The Science Advisory Council (SAC), consisting of up to nine members, assists the EMC by providing scientific and technical advice relating to the protection of the drinking water supply and wildlife habitat within the Reserve.

Chapter 47 of the Acts of 2002 also established an Environmental Officer for the Reserve. Mr. Leonard Pinaud of MassDEP is the Environmental Officer. In this capacity, he provides monitoring of military and civilian activities on and uses of the Reserve and the impact of those activities and uses on the water supply and wildlife habitats. Working directly for the EMC, the Environmental Officer has unrestricted access to all data and information from the various environmental and management programs in the Reserve. He has full access to all points in the Reserve and conducts inspections at any time in order to monitor, oversee, evaluate, and report to the EMC on the environmental impact of military training and other activities. His on-site monitoring occurs prior to, during, and immediately following training and other activities. The Environmental Officer's monitoring activities include but are not limited to: training sites, pollution prevention and habitat protection activities for both military and military contractors in the Reserve, as well as coordinating with and consulting with the Massachusetts National Guard Environmental & Readiness Center (E&RC) on various projects, initiatives and issues.

The Environmental Officer acts as a liaison between the EMC, SAC, CAC, military, general public, and various state agencies. He identifies and monitors ongoing issues regarding training procedures and the environment in the Reserve and keeps the EMC, SAC and CAC apprised of the progress of these issues in addition to bringing issues to the E&RC for resolution. He also participates in community outreach activities with the E&RC and facilitates the EMC, SAC and CAC public meetings under the legislation.

The EMC, SAC and CAC met a total of seven times during Training Year (TY) 2018. The groups discussed a number of topics, all of which are covered in this report. In November 2017, an Ad Hoc Committee to the Science Advisory Council was established. Please see Section 2.3 for further discussion. Minutes from the meetings may be found at www.massnationalguard.org/ERC/emc.html.

Figure 1-2 Utility Easements and Leases

SECTION 2 SMALL ARMS RANGES AND MILITARY TRAINING ACTIVITIES

2.0 INTRODUCTION

Section 2 of the Annual Report provides an update on actions associated with active small arms ranges in the Reserve including range maintenance, environmental sampling and levels of military and civilian use of the ranges. This section also provides information on the use of Training Areas, Training Support Areas (TSA) in the Cantonment Area of Camp Edwards, information on simulated munitions, the Soldier Validation Lane (SVL), and off-site training during TY 2018.

2.1 CAMP EDWARDS TRAINING AREA/UPPER CAPE WATER SUPPLY RESERVE

2.1.1 Military and Civilian Use

The MAARNG has approximately 5,880 soldiers who train on average one weekend per month and one two-week cycle during a training year. Units start planning their training several years in advance of the year in which they actually conduct their training. The unit leadership assesses the strengths and limitations of its personnel and begins to schedule training sites and resources to best support the training their units require. During the year prior (TY 2017) to the year of execution (TY 2018) units confirm geographical areas and training sites within the Reserve.

Military training activities in the Reserve are tracked by Range Control based on individual training area use and the number of personnel participating in this use. This method records the number of times each training area is utilized and the number of personnel and vehicles utilizing the areas for each event. Figure 2-1 shows the locations of the major training areas and firing ranges in the Reserve.

Camp Edwards Range Control manages and tracks training area use. For example, Table 2-1 shows the overall utilization of the ranges, training areas and training support areas during TY 2018, while Table 2-2 shows their utilization for each of the past 10 training years. For specific training area use for TY 2018 see Table 2-3 and for the ten year totals for training area use see Table 2-4. Range Control is operational 24 hours per day when units are training and, during the course of a training day, personnel from Range Control will observe units at various locations to ensure that they are following range and safety regulations.

Military training activities in the Reserve are tracked by the number of times each training area is utilized per day and by the number of personnel and vehicles utilizing the areas for each use. In many cases personnel and vehicles utilize more than one training area per day. Figure 2-2 shows a color-coded personnel use by training area for each of the past ten training years. Figure 2-3 provides a color-coded ten year personnel use by training for the past ten training years. Figure 2-4 shows a color-coded daily usage by training area for each of the past ten training years with Figure 2-5 providing a color-coded ten year daily usage by training area for the past ten training years. For example, as seen in Figure 2-5, training areas B-8 and B-9 were not used, and area B-10 shows a reduction in use; this is a result of the closure of these training areas due to the proximity to the Monument Beach Sportsman's Club's firing range. These training areas are within the surface danger zone for the rifle range and therefor are closed when the club's range is operational. Another example would be the increased use in BA-7 where the Dig Site was used for a combined arms exercise this past June; thereby a single event caused the appearance of a significant increase in use of the training area as a whole. Graph 2-1 shows the average personnel use by training area for TY 2009 to TY 2018; Graph 2-2 shows the average days used by training area for TY 2009 to TY 2018. As units become aware that the ranges and other training venues at Camp Edwards meet qualification standards, the use of the areas were these venues are located will increase. Fluctuations in training usage is also largely influenced by deployment cycles and changes to training doctrine and directives. In addition, over the past two decades, cleanup activities in the Reserve have resulted in small arms ranges and other training venues being unavailable for use. As the cleanup comes to completion, it is likely that there will be greater training opportunities at Camp Edwards. So with new ranges, training venues, and eventual completion of the cleanup program, Training Area use and numbers will fluctuate accordingly.

Figure 2-2	Personnel	Usage by	/ Trainina	Area in the	Reserve.	TY 2009 -	TY 2018

Figure 2-3 Ten Year Personnel Use by Training Area in the Reserve, TY 2009 – TY 2018

Figure 2-4 Daily Usage per Training Area in the Reserve, TY 2009 – TY 2018

Figure 2-5 Ten Year Daily Usage by Training Area in the Reserve, TY 2009 – TY 2018

Graph 2-1 Average Personnel Use by Training Area for TY 2009 to TY 2018

Graph 2-2 Average Days Used by Training Area, TY 2009 to TY 2018

In the tables below, civilian use includes use of the ranges and training areas in the Reserve and the Training Support Areas in the Cantonment Area; civilian use ranges from unmanned aircraft systems ground operations and flight testing, to practicing land navigation, to training in the Calero Mobile Military Operations on Urban Terrain Site, to use of classrooms and other facilities. In addition, there were also deer and turkey hunting seasons during TY 2018. Information on these activities is provided in Sections 3.5.4 and 3.5.5 of this report. Fluctuations in training days and event numbers from year to year is a result of differing unit training requirements, combined training needs, and deployment cycles.

TABLE 2-1 OVERVIEW OF TRAINING USE - TY 2018						
	PERSONNEL					
Area	Training Days/Events	Military Personnel	Civilian Personnel			
Ranges	174	5,669	120			
Training Areas	893	69,652	238			
Training Support Areas	1,051	28,543	1,315			
TOTAL	2,118	103,864	1,673			

	TABLE 2-2 TRAINING	USE HISTORY	
Training Year	Training Days/Events	Military Personnel	Civilian Personnel
TY 2018	2,118	103,864	1,673
TY 2017	2,268	144,671	3,450
TY 2016	2,065	92,083	2,271
TY 2015	2,105	122,645	2,691
TY 2014	1,845	121,740	2,050
TY 2013	1,052	46,361	1,650
TY 2012	1,117	78,745	866
TY 2011	1,232	71,707	819
TY 2010	1,721	156,425	6,945
TY 2009	1,535	116,122	1,324
TOTAL	17,058	1,054,363	23,739

2.2 RANGE UPDATE

The current active small arms ranges on Camp Edwards are Juliet, Kilo, Sierra, India, and Lima ranges. Tango Range is currently inactive as its STAPP[™] system was dismantled in Fall 2017 (see Section 2.3.2). The locations of these ranges are shown in Figure 2-1.

2.3 SCIENCE ADVISORY AD HOC COMMITTEE

On November 2, 2017, the EMC formed an Ad Hoc Committee to the SAC to review current small arms range environmental monitoring process and aide in developing the most appropriate monitoring processes for those ranges. Committee members are SAC members Phil Gschwend and Jack Duggan, both geochemists, SAC member Denis LeBlanc, US Geological Survey, and Jay Clausen from Cold Regions Research Lab, who is a metals mobility expert. The committee has a sunset clause of two years until November 2, 2019.

The committee met on August 15, 2018, and discussed whether the current small arms range monitoring is meeting the requirements of the EPSs and if the monitoring program is designed in a way that provides an early warning indicator that is protective of the groundwater. Instead of continuously measuring metals levels in soil that has shown insignificant change since monitoring began, the committee recommended monitoring for those conditions that could cause metals mobility in soils. This would act as a monitoring indicator that metals could become mobile. Metals monitoring would continue and based on sampling data to date the timing of monitoring may be changed as well, e.g. annually vs every three years. An Ad Hoc meeting will be held late winter of 2019 to bring new data and information forward and to propose a new sampling plan.

2.4 TANGO, JULIET AND KILO RANGES

Lead ammunition firing resumed at Tango Range in August 2007, at Kilo Range in March 2009, at Juliet Range in August 2009, Tango Range was dismantled in November 2017 and will be reconfigured as a copper-only range (see Section 2.4.2).

2.4.1 Range Maintenance and Sampling

Inspections of the Tango, Juliet and Kilo ranges were conducted by Camp Edwards personnel during TY 2018 in accordance with the provisions of the OMMP.

Maintenance activities conducted at Juliet, Kilo and Tango ranges during TY 2018 included one or more of the following: securing the tarp cover after severe weather, replacing the old tarp, disposing of water from the internal reservoir, repairing tears and seam failures in the top cover and replacing target frames.

A list of the inspection and maintenance activities at these ranges in TY 2018 is included in Appendix C.

In October 2018, surface soil, porewater, and groundwater samples were collected from porewater from the ranges per the OMMP. The samples were analyzed for lead, copper, and antimony. Results of the surface soil and groundwater analyses continue to show no trends or significant concentrations when compared to the Action Levels specified in the OMMPs. The porewater results indicate the presence of antimony in several lysimeters on these ranges, and the concentrations exceeded the Action Level (6 parts per billion [ppb]) for antimony in porewater at each of these locations. However, levels have stayed the same or have dropped off significantly. Figures showing lysimeter locations and data and graphs are in Appendix C. These lysimeters have had antimony detections in previous sampling rounds. It should be noted that the concentrations of the other metals tested for in porewater (lead and copper) remain below the action levels and have remained at relatively the same concentrations since testing began. Antimony is in lead alloy bullets and in bullet primers. There is legacy antimony and lead in the berms from bullets fired into the berms before the STAPPTM systems were built.

There are several potential causes of increased antimony in porewater:

- legacy range soils, where lead-antimony bullets were fired, were used for berm and range construction at Julie, Kilo, and Tango ranges;
- phosphates added to range soils (1998-1999) to immobilize lead in legacy soils; and
- pH levels of soil and porewater.

To further address the issue of antimony and other metals movements through soils, the MAARNG, along with members of the SAC, formed an Ad-Hoc Committee (see Section 2.3) to address this issue and future range monitoring at all active ranges on Camp Edwards. The Ad-Hoc Committee has requested that the MAARNG add the sampling of substances that can cause metals to be mobile in soil to their range monitoring efforts. This will be done in 2019. Another finding of the Ad-Hoc Committee through lab studies at the Cold Regions Research Lab in New Hampshire is that antimony is not threatening the groundwater. (see Section 2.3)

The Tango, Juliet and Kilo Ranges sampling results for TY 2018 are available in Appendix C.

A total of 2,710 gallons (estimated) of water were pumped from the STAPPTM systems on Juliet and Kilo ranges during TY 2018: 1,000 gallons at Juliet and 1,710 gallons at Kilo. The water pumped is the result of incidental seepage of rain water, as well as condensation within the systems. This water has been tested at various times since the systems were installed for constituents that would reasonably be expected to be found on active ranges, particularly metals. The water is managed as a non-hazardous waste water and disposed of accordingly.

Graph 2-3 reflects the amount of water pumped from the STAPPTM systems from TY 2009 to TY 2018. Gallons pumped are estimated figures based on measurements of water in containment areas by dip stick as water pumped from multiple systems can be accumulated in the same disposal drum. The graph below shows an increase in water in the Kilo Range STAPPTM system in TY 2018. During the winter, the tarps protecting the system were damaged; because the system was uncovered, there is an increase in water entering the system. Replacement tarps are on order and all regulatory requirements for STAPPTM water disposal have been met.

Graph 2-3 STAPP™ System Water Pumping

2.4.2 Tango Range Dismantling

Camp Edwards decommissioned and removed the STAPP[™] system from Tango Range in November 2017. The range will be converted to a zeroing range for copper ammunition. Soldiers will be able to zero their weapons at Tango Range and then move to the adjacent Sierra Range to conduct weapons qualification.

The STAPP[™] bullet catcher system and all associated appurtenances were removed in November 2017 and were disposed of in accordance with state and federal regulations and laws. The MAARNG will expand Tango Range to 32 lanes to meet current range standards. To safely use Tango Range, the target and firing lines will be moved 25 meters north to move them out of the Surface Danger Zone of the adjoining Sierra Range, such that both ranges can be used simultaneously.

2.5 SIERRA AND INDIA RANGES

Sierra Range is an automated 300 meter pop-up modified record of fire range using copper ammunition only and is used to qualify soldiers in marksmanship proficiency. The firing line is 200 meters long with 10 firing positions. There are nine stationary, pop-up targets in each firing lane. The targets are located at 50, 100, 150, 200, 250, and 300 meters, with two targets at the 50 meter distance and one each at the other distances.

India Range is a basic 25-meter firing range using copper ammunition to train soldiers on the skills necessary to align the sights on their weapons and practice basic marksmanship techniques against stationary targets. It has 20 firing positions with one target in each firing lane. The range is also used for short-range marksmanship training and qualification.

The EMC approved use of Sierra Range for copper ammunition for a two-year pilot program period in June 2012; India Range was approved for copper ammunition in May 2013. Firing of copper ammunition commenced at Sierra Range in July 2012 and at India Range in September 2013. At its meeting on July 24, 2014, the EMC extended the pilot program period for both ranges through December 31, 2016. In December 2016, the MAARNG requested and was granted EMC approval of an extension of the pilot program period for both ranges through December 31, 2017. The Pilot Period was extended so that further soil, porewater and groundwater monitoring data could be gathered to evaluate environmental impacts of utilizing these ranges and to allow time for the presentation of environmental monitoring data to the SAC, CAC and the EMC. At its November 2, 2017, meeting, the EMC voted to authorize the Acting Environmental Officer to close out the Pilot Period for India and Sierra Ranges and allow the MAARNG to continue to operate the ranges in accordance with the EPSs and the OMMPs.

The MAARNG sent a letter of request to end the Pilot Period on Sierra and India ranges to the EMC's Environmental Officer on November 11, 2017. In a letter dated December 29, 2017, the EMC's Environmental Officer stated that after a compliance review, it was determined that the MAARNG was not in compliance "with one more laws, regulations, orders, licenses, permits or approvals enforced by the EMC and that additional actions are necessary for compliance with the requirements of Chapter 47 of the Acts of 2002 (Chapter 47), the Environmental Performance Standards (revised April 6, 2017; the EPSs) and the range specific SOP and Range Maintenance Plans. Compliance issues identified included lack of completed Detailed Inspection Forms and Range Maintenance Forms; degradation and erosion on the backstop berm at India Range, in the frontal Station Infantry Target berms at the 50 meter targets, and in the 50 and 100 meter backstop berms on Sierra Range. The MAARNG was required to perform maintenance on those ranges prior to any utilization.

The EMC reinspected India and Sierra ranges and found the MAARNG to be in compliance with the OMMP for the range and authorized their use. The Pilot Period for Sierra and India Ranges was extended until December 31, 2018. In a letter dated November 2, 2018, the MAARNG sent a letter of request to end the Pilot Period for Sierra and India Ranges to the EMC's Environmental Officer. On December 12, the EMC's Environmental Officer, along with representatives from Camp Edwards, conducted a compliance inspection at India and Sierra ranges. The ranges were found to be in compliance. In a letter dated December 27, 2018, the EMC's Environmental Officer terminated the Pilot Period for Sierra and India ranges.

2.5.1 Range Maintenance and Sampling

Groundwater, porewater, and surface soil samples were collected from Sierra Range and India Range as prescribed in the OMMP. X-Ray Fluorescence (XRF) soil sampling was conducted at Sierra Range as required. The samples were analyzed for antimony, copper, and lead. Results of the soil and groundwater analyses continue to show no exceedance of the Action Levels specified in the OMMP.

During the 2018 operational sampling, the porewater results indicate that antimony was detected in the porewater lysimeter near the berm on India Range at a concentration exceeding the Action Level (6 ppb). Figures and graphs are available in Appendix C. This result is slightly higher than previous antimony detections at India Range. There is antimony in the berm, along with lead, from bullets fired into the berms before the range was rebuilt for use with only copper bullets.

To further address the issue of antimony and other metals movements through soils, the MAARNG, along with members of the SAC formed an Ad-Hoc Committee (see Section 2.3) to address this issue and future range monitoring at all active ranges on Camp Edwards. The Ad-Hoc Committee has requested that the MAARNG add the sampling of substances that can cause metals to be mobile in soil to their range monitoring efforts. This will be done in 2019. Another finding of the Ad-Hoc Committee through lab studies at the Cold Regions Research Lab in New Hampshire is that antimony is not threatening the groundwater. (See Section 2.3)

Lead was detected in the porewater collected from the lysimeter at the foot of the India Range berm in July/August 2013 at a concentration of 25.1 ppb, exceeding the 15 ppb Action Level. As recommended, this result can now be compared to the current sampling results. The concentration in 2014 dropped to 5 ppb, to 3.6 ppb in 2015, then spiked to 19.8 ppb in 2016, then dramatically decreased to 1.8 ppb in 2017 and has stayed at this level as of the 2018 sampling–below the OMMP Action Level of 7.5 ppb.

The lysimeter at the center range floor on India range had shown an increasing trend for metals in porewater with lead above the OMMP Action Level of 7.5 ppb at 21.6 ppb in 2017. However in 2018, the lead level in this lysimeter was significantly lower at 2.8 ppb which is well below the OMMP Action Level for lead. Antimony and copper are below the established OMMP Action Levels. Graphs showing metals levels are available in Appendix C. Coordination in regards to sampling results takes place with the EMC's Environmental Officer, SAC members, and the Army's Cold Regions Research Lab to help resolve the issue of metals in porewater at the current small arms ranges. The Sierra and India Range sampling results for TY 2018 are in Appendix C.

2.6 LIMA RANGE

In 2012, EPA Region 1 and the EMC approved returning to live firing on Lima Range using the M781 40mm Training Round.

The M781 is a practice grenade that is fired as a projectile composed of a hollow plastic "windshield" filled with Day-Glo-Orange marking powder. The formula for the Day-Glo-Orange marking powder has not changed and as used is considered to be non-toxic to human health and the environment. The initial firing of the M781 40mm Training Round occurred in 2013.

Lima Range is used to train and test individual soldiers on the skills necessary to engage and defeat stationary target emplacements with the 40mm grenade launcher. The range has four self-contained stations and is 30-meters wide by 400-meters long. The stations consist of firing positions and targets of various types and distances, ranging from 100 to 350 meters.

2.6.1 Range Maintenance and Sampling

A list of the inspection activities at Lima Range in TY 2018 is included in Appendix C.

Porewater samples were collected from Lima Range in accordance with the OMMP and analyzed for lead, copper, and antimony. There were no Action Level exceedances when samples were analyzed from Lima Range during the 2018 sampling effort. The Lima Range sampling results for TY 2018 are in Appendix C.

2.7 RANGE USAGE DATA

A total of 1,565,081 rounds of lead ammunition have been fired at Tango, Juliet and Kilo ranges since STAPPTM systems were installed (at Tango Range in 2006; and Juliet and Kilo Ranges in 2008) and their use approved: 437,131 at Juliet Range and 783,924 at Kilo Range. As of November 2017, the Tango Range STAPPTM system was dismantled; there is currently no firing on Tango Range. Graph 2-4 provides a summary of lead ammunition rounds fired at Tango, Juliet and Kilo from TY 2009 to TY 2018. The graph shows a declining trend in usage of lead ammunition. There is a small uptick in usage on Kilo Range due to Tango Range being dismantled; Kilo Range is also the larger of the two remaining STAPPTM system ranges and can accommodate more soldiers during a given training. In addition, the number of functional lanes on Juliet Range has decreased. As unit awareness increase that there are qualification ranges at Camp Edwards, the preference is to use the copper ranges (Sierra and India ranges). Therefore, there has been an increase in use of copper ammunition and, in general, an associated decrease in the use of lead ammunition at the STAPPTM ranges where units have to use an alternate qualification process. However, as units become aware that the ranges at Camp Edwards meet qualification

standards, the use of all ranges, and ammunition types, will go up, to include the lead ranges. Fluctuations in training usage/ammunition usage is also largely influenced by deployment cycles and changes to training doctrine and directives. Information on lead ammunition fired from TY 2009 through TY 2018, including amounts and types, is provided in Appendix C.

Graph 2-4 Lead Ammunition Use - Tango, Juliet and Kilo Ranges

A total of 790,731 rounds of copper ammunition have been fired at Sierra and India ranges since its use was approved: 456,787 at Sierra Range and 333,944 at India Range. Graph 2-5 provides a summary of copper ammunition fired at Sierra and India ranges since use of copper ammunition was approved at them. The graph shows an upward trend in copper ammunition use. The MAARNG's stores of lead ammunition. Juliet and Kilo ranges (lead ammunition ranges) will be transitioning to all copper-based ammunition. Juliet and Kilo ranges (lead ammunition ranges) will no longer be used by the MAARNG, but will be still be used by other entities, such as law enforcement. Information on the number of copper ammunition fired on Sierra and India ranges each training year from TY 2012 through TY 2018 is provided in Appendix C. A total of 9,323 M781 40mm Training Rounds have been fired at Lima Range since its use was approved. Graph 2-6 provides information on the number of M781 40mm Training Rounds fired at Lima Range since their use was approved. The graph reflects the cyclic requirement for qualification for grenadiers. Units that have grenadiers only have one to two soldiers with that requirement in the unit; not every soldier uses this weapon.

There was no civilian use of the firing ranges during TY 2018. During TY 2018, some type of weapons firing was conducted on at least one of the ranges on 55 calendar days.

^{*}The Tango Range STAPP system was dismantled in November 2017. There is currently no firing on Tango Range.

Graph 2-5 Copper Ammunition Use – Sierra and India Ranges

2.7.1 Training Areas

Camp Edwards has numerous areas that support military training: Training Areas, battle positions, observation posts, training roads, etc. The Training Areas also support a variety of training activities including land navigation, bivouacs, Soldier Validation Lanes, meteorological data collection, engineer/infantry/artillery skills training, drivers (day and night) training, and Reserve Officer Training Corps (ROTC) training.

Information on utilization of the Training Areas and major locations within them during TY 2018 is provided in Table 2-3. The total overall utilization of the training areas for the past 10 training years is included in Table 2-4. The variations over the years in training days and personnel numbers is a result of differing unit training requirements, combined training needs, and deployment cycles. During TY 2018, some type of training was conducted in at least one of the training areas on 208 calendar days. The numbers in Tables 2-3 and 2-4 do not include employees and vehicles from the remediation programs and private contracting firms. Also, hunters using the Reserve during the deer and turkey seasons are not tracked as they move through the various training areas; please see Sections 3.5.4 and 3.5.5 for information about the deer and turkey hunting seasons.

Other military users of the Training Areas during TY 2018 included the Massachusetts Air National Guard, the New York ARNG, the New Hampshire ARNG, the Army Reserve, the US Coast Guard and US Coast Guard Reserve, the US Air Force, the US Marine Corps, and the US Navy. Civilian organizations using the Training Areas during TY 2018 included the Boy Scouts of America, Brookline Special Response Team, Avwatch, Massachusetts Environmental Police, and Massachusetts Institute of Technology-Lincoln Lab, and environmental remediation contractors and environmental restoration contractors.

TABLE 2-3 TRAINING AREA USE - TY 2018						
Training	Training	Personnel		Vehicles	Vehicles	
Area	Days	Military	Civilian	(Wheeled) #	(Tracked) #	
SVL-OBJ 1	35	3,003	16	107	0	
SVL-OBJ 2	16	1,961	0	0	0	
SVL-OBJ 3	7	547	0	48	12	
OP 1	11	1,388	0	0	0	
OP 2	11	1,388	0	0	0	
OP 3	11	1,388	0	0	0	
OP 4	11	1,388	0	0	0	
OP 5	6	531	0	0	0	
OP 6	9	888	0	0	0	
OP 7	9	888	0	0	0	
BP 1	5	205	0	0	0	
BP 2	18	583	0	0	0	
BP 6	10	1,040	0	0	0	
BP 7	19	1,046	0	2	0	
BP 8	15	348	0	0	0	
BP 9	9	118	28	0	0	
BP 14	19	918	0	0	0	
BP 16	19	918	0	0	0	
BP 24	2	125	0	6	0	
BP 27	21	2,018	0	38	0	
BP 28	19	1,538	0	0	0	
NBC 1	13	1,116	0	10	0	
NBC 4	4	400	0	0	0	
Training Roads	72	6,866	28	0	0	

TABLE 2-3 TRAINING AREA USE - TY 2018, cont'd						
Training	Training Training Personnel Vehicles					
Area	Days	Military	Civilian	(Wheeled) #	(Tracked) #	
A 1	3	56	0	0	0	
A 2	14	1,882	0	12	0	
A 3	19	1,736	0	12	0	
A 4	18	1,864	0	0	0	
A 6	12	1,044	0	0	0	
B 7	15	1,065	0	31	0	
B 10	12	1,080	0	6	0	
B 11	14	1,020	0	6	0	
B 12	14	1,143	0	6	0	
BA 1	4	248	0	13	0	
BA 3	37	2,190	120	0	0	
BA 4	30	2,665	0	10	0	
BA 6	3	96	0	0	0	
BA 7	48	3,232	0	86	0	
C 13	18	1,813	0	0	0	
C 14	41	3,449	0	92	0	
C 15	29	2,195	0	33	0	
C 16	21	1,568	0	0	0	
Land Nav 1	14	717	0	6	0	
Land Nav 2	23	1,762	0	6	0	
Land Nav 3	20	950	0	0	0	
Land Nav 4 Alpha	12	823	0	0	0	
Land Nav 4 Bravo	9	735	0	0	0	
Land Nav 4 Charlie	16	1,010	10	0	0	
Dig Site 3	40	4,298	28	0	0	
R-4101 Airspace	36	402	8	0	0	
Total	893	69,652	238	530	12	

TABLE 2-4 TRAINING AREA USE HISTORY							
Training	Training	Personnel		Vehicles	Vehicles		
Year	Days/Events	Military	Civilian	(Wheeled)	(Tracked)		
TY 2018	893	69,652	238	530	12		
TY 2017	688	42,478	1,344	1,244	12		
TY 2016	551	24,344	1,858	2,805	0		
TY 2015	681	33,219	1,909	2,198	0		
TY 2014	642	39,137	370	4,129	0		
TY 2013	247	11,164	181	1,484	7		
TY 2012	232	13,532	122	2,037	5		
TY 2011	298	16,591	132	2,232	2		
TABLE 2-4 TRAINING AREA USE HISTORY, cont'd							
---	-------------	----------	----------	-----------	-----------	--	--
Training	Training	Persor	nnel	Vehicles	Vehicles		
Year	Days/Events	Military	Civilian	(Wheeled)	(Tracked)		
TY 2010	614	63,379	488	5,627	3		
TY 2009	327	17,577	56	2,445	10		
TOTAL	5,173	331,073	6,698	24,731	51		

2.7.2 Vehicle Use, Fueling and Maintenance

Vehicle use in the training areas during TY 2018 was 530 wheeled vehicles. Twelve tracked vehicles were used. These numbers do not include vehicles from the Impact Area Groundwater Study Program (IAGWSP) program and contractors. Pumping fuel in the Reserve has been prohibited by the EPSs since 2002, however the MAARNG is proposing to modify the EPSs to allow refueling in the Reserve under certain conditions. Please see Section 2.14 for further discussion. Currently, the fuel point and the secondary containment pads in the Tactical Training Base (TTB) area represent the designated location for units to refuel and park and store tanker trucks at Camp Edwards.

The military does not conduct scheduled vehicle maintenance in the training areas. Personnel in the field are authorized only to check fluid levels, add small amounts, and repair flat tires or track sections that separate during training. Major repairs and other maintenance activities and training occur at the Unit Training Equipment Site (UTES) facility located in the Cantonment Area of Camp Edwards. The UTES facility is a vehicle and motor pool area; the Massachusetts National Guard has also designated the area as a Satellite Accumulation Point to store hazardous waste.

2.7.3 Training Support Areas (Simulators, Cantonment Area)

There are separate facilities and equipment that can simulate live military training; these are grouped under the Training Support Area (TSA). The majority of the training activities associated with these facilities are conducted in the Cantonment Area of Camp Edwards.

Table 2-5 presents the total number of training days/events and personnel that used each TSA during TY 2018. Overall historical use of the TSA for the past 10 training years is included in Table 2-6. Because unit commanders maximize training time by rotating personnel through several different events or exercises in a given training cycle, this again presents an inflated figure for training days compared to calendar days.

Civilian organizations using the Training Support Areas in the Cantonment Area of Camp Edwards during TY 2018 included AIGS, Boy Scouts of America, Drug Enforcement Agency-Special Response Team, the Federal Aviation Administration, the Barnstable County Sheriff's Department, Brookline Special Response Team, Massachusetts State Police, US Geological Survey, the Civil Air Patrol, Massachusetts Maritime Academy, Massachusetts Division of Fisheries and Wildlife, and the US Postal Service.

TABLE 2-5 TRAININ	G SUPPORT AREA USE -	TY 2018	
Training Support Area	Training Days/Events Personne		onnel
		Military	Civilian
1100 Training Area (Drivers Tng)	7	230	0
1300 Training Area	10	2,150	0
3400 Training Area/Rail Load Ramp	2	100	0

TABLE 2-5 TRAINING SUPPORT AREA USE - TY 2018, cont'd					
Training Support Area	Training Days/Events	Personnel			
•	U , , ,	Military	Civilian		
APFT Running Track	32	3,010	0		
Asymmetric Threat Classroom	8	292	0		
Battle Simulation Ctr - Bldg 1206	126	8,360	420		
Battle Simulation Ctr - Rear Offices	46	1,355	0		
Battle Simulation - Bldg 1213, 1st Floor	39	2,130	300		
Battle Simulation - Bldg 1213, 2nd Floor	71	2,760	300		
Battle Simulation - TOC Pads	14	700	0		
Call for Fire Trainer	54	1,191	43		
Virtual Battle System 3 Classroom - Bldg 3494	43	1,063	0		
Connery Field	12	330	0		
Engagement Skill Trainer 2000 - A	10	136	0		
Engagement Skill Trainer 2000 - B	68	983	28		
Engagement Skill Trainer 2000 - C	38	331	12		
HMMWV Egress Assistance Trainer 1123	8	288	0		
HMMWV Egress Assistance Trainer 1132	2	39	0		
HMMWV Egress Assistance Trainer 1215	7	121	0		
Lee Field	19	1,880	1,080		
MRAP	6	321	0		
ODS - Operator Driving System	3	50	0		
Shaw Field	42	3,232	960		
Vault 1 - TSC	32	364	0		
Vault 2 - TSC	30	60	0		
Vault 3 - TSC	62	132	0		
Virtual Convoy Opns Trainer #43 (VCOT - TSC)	37	439	0		
Virtual Convoy Opns Trainer #98 (VCOT - TSC)	31	362	0		
Weapons Cleaning - Bldg 3498	41	1,246	0		
Welcome Center	151	5,634	842		
YD Memorial Park	10	330	300		
TY 2018 Total	1,061	39,619	4,285		

	TABLE 2-6 TRAINII	NG SUPPORT ARI	EA USE HISTORY			
Training Year	Training Days/Events	Personnel				
		Military	Civilian	Total		
TY 2018	1,061	39,619	4,285	43,904		
TY 2017	1,299	96,783	1,150	97,933		
TY 2016	1,224	50,463	282	50,745		
TY 2015	1,313	73,678	627	75,618		

TABLE 2-6 TRAINING SUPPORT AREA USE HISTORY, cont'd						
Training Year	Training Days/Events	Personnel				
		Military	Civilian	Total		
TY 2014	1,132	77,516	1,541	79,057		
TY 2013	742	42,654	1,404	44,058		
TY 2012	824	63,210	691	63,901		
TY 2011	852	52,225	574	52,799		
TY 2010	1,052	90,439	6,116	96,555		
TY 2009	1,137	94,836	1,180	96,016		
TOTAL	10,636	681,423	17,850	700,586		

2.8 OFF-SITE TRAINING

During TY 2018, the MAARNG had 87 units conduct their annual two-week training cycle. Of these, 30 units trained in Massachusetts, 29 of which trained solely at Camp Edwards. Thirty-three units trained in twelve different states and one country; two in Connecticut, one in Alabama, one in Indiana, three in California, fourteen in New York, two in Iowa, one in North Carolina, one in Utah, one in Texas, nine in Vermont, and one in New Jersey, four units in Canada, and six units deployed oversees.

The total number of Massachusetts soldiers trained during annual training for TY 2018 was 3,968 out of 6,335. Fifteen units conducted year-round annual training consisting of 594 soldiers, while 1,773 attended a military school or returned from deployment, in lieu of annual training. The number of MAARNG soldiers that completed a two-week annual training cycle by general geographical locations is: 80 in Massachusetts, 3,578 in other states, and 310 outside of the continental United States.

2.9 SIMULATED MUNITIONS

The MAARNG uses two types of simulated munitions at Camp Edwards: an Ultimate Training Munitions (UTM) Man Marker Round and a Simunitions FX Marking Round. The EMC required that the Annual Report include steps taken by the National Guard and progress associated with converting to the use of lead-free primer in simulated munitions. The Massachusetts National Guard monitors the activities of the U.S. Army Environmental Command in its efforts working with private industry development of alternate munitions; currently no new information has been provided. No simulated munitions were used during TY 2018. Simulated munitions are best used in concert with other simulators to be effective for most units; therefore their effective training use is currently limited. Graph 2-7 provides the number of UTM and Simunitions FX Marking Rounds fired in the Reserve since 2009. The higher numbers of UTM used in 2009 and 2010 were due to units deploying.

Graph 2-7 Simulated Munitions Use

2.10 PYROTECHNICS

The M116A1 Hand Grenade Simulator was approved for use at Camp Edwards in March 2010. Eighty-seven were used in the Reserve during TY 2018. Graph 2-8 shows the number used each training year since TY 2010.

Graph 2-8 Pyrotechnics Use in the Reserve History

2.11 M69 HAND GRENADE SIMULATOR

In 2013, EPA Region 1 and the EMC approved the use of the M69 Hand Grenade Simulator on Camp Edwards.

The M69 provides realistic training and familiarizes soldiers with the functioning of a fragmentation hand grenade. The average soldier can throw the M69 approximately 40 meters (131 feet). After a delay of four to five

seconds, the M69 emits a small puff of white smoke and makes a popping noise. The grenade bodies are reused repeatedly by replacing the fuse assembly.

Camp Edwards developed a Standard Operating Procedure and Course Management Plan for the M69 Hand Grenade Simulator, approved by the EMC in 2014. The plan allows for maximum effective use of the M69 Hand Grenade Simulator with the M288 Fuse in the Camp Edwards Training Areas and on the Hand Grenade Qualification Course while abiding by training and environmental guidelines. Use of the M69 Hand Grenade Simulator began in September 2014. Sixty were used in the Reserve in TY 2018. Graph 2-9 shows the number of M69 Hand Grenade Simulators used since TY 2014.

Graph 2-9 M69 Hand Grenade Simulator Use

2.12 SOLDIER VALIDATION LANE

The SVL uses conex-like shipping containers as training aids, which can be reconfigured to mimic small villages and used for Improvised Explosive Device (IED) training. The containers are located in open or previously cleared, historically used training areas including training and bivouac sites within the Training Area. The ability to periodically reconfigure the portable training aides within the Training Area will critically enhance the ability to adapt scenarios to the most current combat situations, ultimately helping to save the lives of soldiers on the battlefield.

Three SVL locations (called objectives) were used during TY 2018 to meet military training needs: Objective 1 in Training Area A-4; Objective 2 in Training Area BA 4; and Objective 3 in Training Area B 11. Graph 2-10 shows the use of all four SVL Objectives since TY 2012. The locations of the SVL Objectives are shown in Figure 2-6. The graph shows an increase in usage at the SVL objectives. Units have been directed to utilize Camp Edwards, and training doctrine has shifted towards more supporting unit exercises.

The Natural Heritage and Endangered Species Program (NHESP) requires a yearly monitoring report be submitted documenting the locations and numbers of containers and the approximate dates of placement within

these locations, as well as documenting any cutting of trees or leveling of sites that were required for container placement. The Soldier Validation Lane Annual Monitoring Report for TY 2018 is available in Appendix C.

2.13 ECHO RANGE

Echo Range, a dual purpose range, is a Combat Pistol/Military Police Qualification Course (CPMPQC), consisting of 15 firing lanes with seven pop-up targets per lane offset along the firing lanes at varying distances with one fixed Military Police target at the end of the lane. Shooters shift their pistol firing position to engage the targets at the varying distances. Projectiles are fired at pop-up targets, pass through and strike the backstop berm. The two courses of fire, on the same range, are referred to as an automated combat pistol/MP firearms qualification course.

Over the last four training years, Camp Edwards staff has worked to finish upgrading Echo Range for use with lead ammunition, a process originally begun in 2006. Actions included conducting line of site analyses, test firing, and the development of a scope and contract for range design modification that is in compliance with regulatory requirements and be protective of the environment.

Camp Edwards has constructed Echo Range to be a CPQC. The backstop berm will be utilized as the primary projectile capture area. Single Individual Target (SIT) frontal berms are the capture location for extreme low shot projectiles. The backstop berm was constructed on core material (native), landscape fabric as a demarcation line, a projectile capture medium that is 1/8th minus (road sand), and capped with top soil that slows projectiles and allows for vegetation and slope stabilization.

In TY 2017, the EMC's Environmental Officer approved the range design and OMMP for Echo Range. During TY 2018, Camp Edwards Range Control brought the Megett Target company to Echo Range to trouble shoot issues with the pop-up targets on the range. The company identified two issues: the target lifters were becoming damp and the antenna installed at Sierra Range controlling those targets was causing interference. Those issues were fixed. Range Control staff also received training on targetry maintenance. Echo Range is expected to be operational in winter 2019.

Figure 2-6 SVL Objective Locations

2.14 EPS 15.3.3 FIELD REFUELING

The MAARNG is proposing to modify EPS 15.3.3, Fuel Management, which states: "No storage or movement of fuels for supporting field activities, other than in vehicle fuel tanks, will be permitted except in approved containers no greater than five gallons in capacity." The MAARNG is making a request of the EMC that vehicle refueling in the Reserve be allowed under certain conditions. In the past, exceptions to the standard have been granted regularly so that the MAARNG can complete critical remediation, construction and training area and habitat management in the most cost effective and efficient manner. In addition to the MAARNG's need to refuel vehicles for remediation, range construction and training area and habitat management, there is a required need for MAARNG soldiers to be able to train effectively with refueling in a tactical, field training environment.

In TY 2017, the MAARNG conducted its first Proof of Concept was conducted outside of the Reserve, within TTB Kelley, to illustrate that field refueling can be conducted in a safe and environmentally protective manner. During the Proof of Concept, MAARNG soldiers refueled a Blackhawk helicopter in a tactical environment, demonstrating their standard BMPs, which are protective of the environment. BMPs included large-capacity secondary containment under the fueler and secondary containment at connections in the fuel line. A second Proof of Concept was conducted during TY 2018 at Battle Position 2 that consisted of refueling HUMVEEs. BMPs include secondary containment under the fueler and a drip pan on the ground under the nozzle (See Photograph 2-1).

The MAARNG has drafted a Standard Operating Procedure for fueling in the Reserve along with a map that denotes areas for fueling vehicles and off-limits areas. The MAARNG will also develop language for the proposed EPS change. The MAARNG plans to return to the EMC and its advisory bodies in TY 2019 to present this information and request a change to this EPS.

Photograph 2-1 HUMVEE refueling in the Reserve during the TY 2018 Proof of Concept

2.15 MULTI-PURPOSE MACHINE GUN RANGE

During TY 2015, the MAARNG was awarded a MILCON (Military Construction) project to construct a Multi-Purpose Machine Gun Range (MPMG) in 2020 on Camp Edwards at the current KD Range. An MPMG is where soldiers train and qualify with automatic weapons. KD Range is a 600-yard Known Distance Range that is currently divided into two subparts with two distinct firing line/target configurations and training uses.

The approximately \$11.5 million project consists of \$9.7 for range construction and \$1.8 million for targetry. Environmental contracting and review of the project began in May 2018, and will include review under both the National Environmental Policy Act (NEPA) and the Massachusetts Environmental Policy Act (MEPA). An Environmental Assessment will be created and will be available for public review and comment in late TY 2019 or early TY 2020. The MAARNG The project is anticipated to begin construction in March 2020 with project completion in March 2022.

As part of the preliminary planning process, Camp Edwards conducted a test fire at KD Range on August 14, 2015, to simulate noise from the proposed MPMG range. The results of the test fire showed noise levels did not exceed MassDEP levels for nuisance noise and met the Army's criteria for considering a range in this area. Other surveys included an Archeological Survey in 2016 (no "finds" reported); Flora/Fauna Planning/Impact Assessment Surveys; Federal species-Bats surveyed in 2015 and 2016 (project area); Frosted elfin surveyed for in 2017, and the Rusty-patched bumble bee, which was surveyed for in 2017; State species-Eastern Whip-poor-will surveyed annually, including adjacent to project area; updated base-wide Moth survey and then under the Migratory Bird Treaty Act, base-wide annual bird monitoring including in and near the project area.

In November 2018, the RFP for the range design contract was awarded. When there is a 30% design, the environmental review process will begin in earnest with the start of the NEPA process and completion of the draft Environmental Assessment; beginning the MEPA process, and completing the EMC range development process by complying with the EPSs. All these processes will be coordinated with the EMC's Environmental Officer.

SECTION 3 ENVIRONMENTAL PROGRAM MANAGEMENT

3.0 INTRODUCTION

Chapter 47 of the Acts of 2002 requires the Annual Report to contain information describing the range of resource management activities conducted by the MAARNG in the Reserve and to report on activities associated with the EPSs for the Reserve. Sections 3.1 through 3.16 include information for each EPS where there were associated activities. Section 3.17 provides similar information for the generic Cultural Resources EPS that also applies to MAARNG activities in the Reserve. In addition to meeting this requirement, Section 3 provides information on required mitigation measures undertaken by the MAARNG and information on any noncompliance with the EPSs or other laws and/or regulations.

Chapter 47 of the Acts of 2002 also requires the Annual Report to describe long-term trends in the major areas of resource management and activities. Data is provided in this report back through TY 2009, when available, or longer when appropriate to illustrate long-term trends. Additional information on environmental management activities performed in the Reserve can be found on the Publications page of the E&RC web site at: www.EandRC.org.

During TY 2018, eight Records of Environmental Consideration (RECs) were reviewed for natural and cultural resources for proposed actions in the Reserve. The RECs reviewed were for Natural Resources Program-related activities.

Appendix D identifies the relevant federal, state, DoD, and U.S. Army environmental regulations governing MAARNG activities in the Reserve.

3.1 GROUNDWATER RESOURCES MANAGEMENT

The MAARNG complied with the Groundwater Environmental Performance Standard during TY 2018. Travel in Zone 1 Wellhead Protection Areas was limited to foot travel or to vehicles required for construction, operation or maintenance of wells. The Upper Cape Water Supply Cooperative continues to have fencing around its three water supply wells and appropriate signage around the wells' 400-foot radius in the Reserve. Both the Upper Cape Water Supply Cooperative and the 102nd Intelligence Wing operated within the water withdrawal limits of their respective MassDEP issued permit or registration. The Bourne Water District has a well in the Reserve that became operational in TY 2014 as part of its overall water supply system. The JBCC Groundwater Protection Policy is available on the Publications page of the E&RC website at: www.EandRC.org.

3.1.1 Precipitation

Precipitation information included in the Annual Report for TY 2009 was provided by the base weather station near the airfield in the Cantonment Area of Otis ANGB. Starting with data for TY 2010, precipitation information is obtained from the Northeast Regional Climate Center at Cornell University in Ithaca, New York, based on recordings from a station in East Sandwich, Massachusetts. That station reported a total of 61.21 inches of precipitation for TY 2018 (Graph 3-1).

Graph 3-1 Precipitation Recorded

Note: Source of precipitation information changed with TY 2010 data. See explanation in above text.

3.1.2 Groundwater Level

During the early part of TY 2005, the U.S. Geological Survey (USGS) installed a monitoring well (USGS number MA-SDW 537-0107) on Camp Edwards to record the altitude of the water table in the Cape Cod aquifer. The well is located west of Greenway Road on the J-1 Range in the Reserve and is about 107 feet deep. A recording device in the well electronically transmits a continuous record of the water level near the top of the water-table mound that forms the Sagamore groundwater-flow system on western Cape Cod. The well's location is shown in Figure 3-1.

The pattern of water-level changes observed at the monitoring well is caused by natural seasonal and year-to-year variations in recharge from precipitation. Graph 3-2 shows the trend in the water-table altitude at the USGS monitoring well for the 2005-2018 training years. In TY 2017, the water-table altitude (in feet above the National Geodetic Vertical Datum of 1929, also referred to as sea level) declined to its lowest level since measurements began in 2005. During TY 2018 (October 1, 2017, to September 30, 2018), the water-table altitude rose about 4.2 feet. The water-level rise reflects higher than average precipitation on Cape Cod in 2018.

The IAGWSP provides part of the funding for the installation and operation of the monitoring well because the water-level data are used in that program. The well became operational in January 2005. Information about the well and the observed groundwater levels is publicly available on the following USGS website: http://groundwaterwatch.usgs.gov/AWLSites.asp?S=414159070310501&ncd=

3.1.3 Water Supply Systems

Upper Cape Regional Water Supply Cooperative

The Upper Cape Regional Water Supply Cooperative provided 445,355,000 gallons of water (a daily average of 1,220,150) from its three wells to the six public water supply systems it services during TY 2018: Bourne Water District, Mashpee Water District, Sandwich Water District, the Town of Falmouth water system, the Barnstable County Correctional Facility, and the Otis ANGB water supply system. Graph 3-3 shows the daily average pumping rate of the Cooperative since TY 2009. The locations of the Cooperative's three water supply wells (WS-1, WS-2, WS-3) and its seven sentry monitoring wells (C-1 through C-7) are shown in Figure 1 in Appendix E. The Cooperative's 2018 Long Term Monitoring Sentry Well Sampling Results are in Appendix E.

In May 2018 the explosive compound RDX was detected in groundwater samples collected by the Upper Cape Regional Water Cooperative from sentry wells C-1S (0.43 μ g/L) and C-4S (0.27 μ g/L). The Massachusetts Contingency Plan Groundwater 1standard for RDX is 1 μ g/L (ppb) and the EPA Health Advisory is 0.6 μ g/L.

The IAGWSP resampled sentry wells C-1S and C-4S for explosives and perchlorate on August 1, 2018. No explosives were detected; however perchlorate was detected at low, estimated values in C-1S (0.043-J μ g/L) and C-4S (0.018-J μ g/L), below the Massachusetts Maximum Contaminant Level (MMCL) for perchlorate of 2 μ g/L Travel time from the sentinel wells to the water supply wells is approximately 3 years. The Cooperative water supply wells WS-1, WS-2 and WS-3 were sampled for explosives and perchlorate on August 6, 2018 with no detections.

The IAGWSP has identified groundwater contaminated with RDX and perchlorate in areas upgradient of the Cooperative's sentry wells. The J-2 Northern plume is upgradient of the C4-S sentry well and the J-2 eastern Plume is located upgradient of the C1-S sentry well.

The RDX and perchlorate in these plumes is being captured by multiple extraction wells and RDX has not been previously detected in monitoring wells downgradient of the extraction wells. Shallow and intermediate sentry wells were sampled for explosives and perchlorate in 2015 and the deep sentry wells were sampled for explosives and perchlorate in 2015 and the deep sentry wells were sampled for explosives and perchlorate in any of the samples.

Environmental monitoring wells located upgradient of C-4S were sampled for explosives and perchlorate. Monitoring well 330 was nondetect for explosives/ $0.022 \mu g/L j$ for perchlorate and Monitoring Well 345 was nondetect for explosives and perchlorate.

The Cooperative's and IAGWSP's sampling results are in Appendix E.

Graph 3-3 Daily Water Withdrawal, J-Well and Water Cooperative

Note: Bourne Water District Well 8 began production on May 30, 2014.

Otis ANGB Public Water Supply System

The Otis ANGB system pumped an average of 125,583 gallons of water per day and a total of 46,727,000 gallons of water from its well, known as J-Well (located in the Cantonment Area), during TY 2018. It also received 29,964,000 gallons from the Cooperative during TY 2018; a daily average of 82,093 gallons. Graph 3-3 shows the daily average pumping rate of the Otis system since TY 2009.

A copy of the calendar year 2017 Water Quality Report published by the 102nd Intelligence Wing in May 2018 is provided in Appendix E.

Bourne Water District Water Supply Well

Bourne Water District Well 8 became operational in May 2014. During TY 2018 a total of 55,300,700 gallons pumped, with a daily average of 151,508 gallons pumped. Graph 3-3 shows the daily average pumping rate of Well 8 for TY 2014 through TY 2018. The well's location is shown in Figure 3-1. A copy of the calendar year 2017 Bourne Water District's Water Quality Report is provided in Appendix E.

Other Water Wells

There are two water supply wells located within the boundary of the Reserve, which are not subject to Chapter 47 of the Acts of 2002 and the EPSs. These are located at Cape Cod AFS and the USCG Communications Station. Further information on these water supply wells is available by contacting the Massachusetts Department of Environmental Protection at 508-946-2760.

3.2 WETLANDS AND SURFACE WATER MANAGEMENT

The MAARNG did not take any actions during TY 2018 that resulted in the loss of any wetland resources or their 100-foot buffer areas. No new bivouac areas were created in the Reserve during the year within 500 feet of any wetland and no land alteration activities were conducted by the MAARNG within 100 feet of a certified vernal pool during the year. Representatives of the E&RC routinely attended numerous coordination meetings held by the IAGWSP to stay abreast of the IAGWSP's remediation activities in the Reserve and to ensure appropriate coordination existed between appropriate offices and that remediation activities did not impact wetlands areas.

One project within the Reserve required coordination with the Town of Bourne regarding the town's Wetland Protection By-law in TY 2018. The project coordination with the Town of Bourne and NHESP began and was reported in the TY 2017 Annual Report. The project is the repair of a subset of large puddles impeding the use of Cat and Herbert roads for training and other activities. The puddles in question support Agassiz's Clam Shrimp (*Eulimnadia agassizii*), a state listed endangered species. The Natural Resources Office worked with NHESP to create a Conservation and Management Plan, which outlines a plan for habitat creation, clam shrimp relocation, and monitoring to provide for a net benefit to the species and allow for necessary road repairs. In addition to the NHESP coordination, a Request for Determination of Applicability was submitted to the Town of Bourne and representatives attended a Conservation Commission meeting on August 16, 2018. The work is within the 100-foot buffer of a town jurisdictional wetland. The Commission made a negative determination based on it only occurring within the Buffer Zone and not altering an Area subject to protection.

Additional coordination with the Town of Bourne and the SAC occurred to ensure that repair of a subset of roadway puddles would not require filing under the Wetlands Protection Act or Bourne Wetland Protection Bylaws. There are many puddles throughout the training site that do not support clam shrimp and present a hazard to fauna, particularly vernal pool species by having insufficient hydroperiod. During a site visit a number of features were mutually identified for road repair without concern for negatively impacting wetlands resources.

3.2.1 Vernal Pools

In TY 2018, the Natural Resources Office only monitored puddles for the existence of clam shrimp. No other vernal pools or puddles were monitored for amphibian activity. Monitoring of puddles followed the guidance agreed upon in the Conservation and Management Plan (10 puddles surveyed every two weeks from mid-May to mid-July and then once a month until October 15). The Natural Resources Office had technicians survey additional sites to include puddles in the perimeter of the Impact Area and off base sites that were surveyed to gather data on the distribution of Aggasiz's clam shrimp.

Figure 3-1 Well Locations

3.3 RARE SPECIES MANAGEMENT

The Natural Resources Office and their contractors observed and reported on floral and faunal species listed under the Massachusetts Endangered Species Act (MESA) on Camp Edwards in TY 2018. The office observed six species and is reporting the sightings to NHESP in early TY 2019 (Table 3-1). Field crew members hired for TY 2018 were primarily involved in observing and reporting these rare floral and faunal species in the Reserve with supplementary observations from others. The Natural Resources Office is also reporting observations of five "Tracking List" species to NHESP as a standard condition of scientific collection permits for reptiles and amphibians.

The Natural Resources Office formally and informally reviewed proposed military and civilian activities in the Reserve to ensure that adverse impacts to natural resources (including state-listed endangered species) were avoided or mitigated. Multiple state and federal coordination processes were initiated or completed during TY 2018 for rare species. MESA coordination was initiated for future development of a MPMG range (Project #18-37434) along with submittal of two Impact Area Groundwater Study Program Records of Action (#265 and #266) for multiple monitoring wells and Former E Range investigation, respectively. Three streamlined consultation forms were submitted to the US Fish and Wildlife Service (USFWS) New England Field Office for projects that were outside the scope of the informal consultation, but met the criteria of the exemption for habitat and potential take under the Section 4(d) rule for the Northern Long-eared Bat. These projects included prescribed fire, a 14-acre forestry project, and the above mentioned monitoring wells (summer drilling).

Multiple contracts were developed or continued in TY 2018 for surveying and managing rare species. Wilkinson Ecological Design was contracted to develop a plan for the management of invasive species in rare plant sites. Wilkinson surveyed all sites presently and historically having *Ophioglossum pusillum* or *Triosteum perfoliatum* to determine invasive species present and the management needs. From the surveys, the contractor created a Vegetation Management Plan to treat invasive plants while protecting the rare plants present and the groundwater resource. NHESP reviewed and approved the Vegetation Management Plan. In July, the contractor treated invasives at rare plant sites in accordance with the Vegetation Management Plan and the NHESP permit.

Tetra Tech, a contractor for the MAARNG, completed a database for the Natural Resources Office for storing and analyzing bat acoustic data. The Natural Resources Office plans to populate this with past data to allow for the querying of the large dataset on Camp Edwards. Bat acoustic data requires vetting by qualified biologists. Tetra Tech is currently vetting data from TY 2017; data vetting for TY 2018 bat calls will be contracted in TY 2019.

In Fiscal Year 2018, DoD Partners in Amphibian and Reptile Conservation funded a survey of snake fungal disease on military installations. MAARNG Natural Resources used this as an opportunity to survey snakes on the installation while also aiding this nationwide survey. The Natural Resources Office also coordinated with the State Herpetologist, Mike Jones, to better provide information on two species of interest, black racers (*Coluber constrictor*) and eastern hognose snakes (*Heterodon platirhinos*), currently proposed for state listing as special concern. Coverboards were placed throughout the site and monitored monthly. Either scale cauterization or PIT tagging was used to prevent taking samples from the same individuals and to provide accurate information to MassWildlife. For the snake fungal disease survey, field staff filled all 50 provided vials with swabs taken from 17 individual snakes of four species. Results should be available in 2019. In total, coverboard surveys documented 32 individuals from five species.

3.3.1 Rare Species Reporting

Table 3-1 identifies the rare species sightings reported to NHESP for the past five years. (See Appendix F for sightings reported for the past 10 years.) The fluctuation in numbers reported is attributed to a variety of factors, including but not limited to: the time and length of surveys, locations where surveys are conducted (the same locations are not necessarily visited each year), intensity of the surveys, the number and experience of summer

field crew personnel, weather conditions during the times available for surveys, locations where soldiers may train during the training year, familiarity of individual soldiers and others utilizing the various training areas and training support areas on Camp Edwards with rare species, etc. With these limitations and the varied associated counting procedures and efforts, the numbers contained in Table 3-1 do not reflect changes or trends in populations. These are raw number counts that are reported to NHESP based on sightings.

Efforts are ongoing to collect rare species and management data in a way that allows for trends analysis that will better inform management decisions and meet the intent of Chapter 47 of the Acts of 2002. The data currently reported in the table are gross observations only and not interpretable for trends. State-listed species such as the Whip-poor-will lend themselves to data collection for trends analysis (annual point-count transects) and cooperation with statewide or national efforts. Likewise, grassland bird monitoring standardization will allow for long-term trends analysis and better integration with broader conservation initiatives. The Natural Resource Program staff are working with statewide and regional efforts to coordinate monitoring, including participating in the annual Northeastern Nightjar Survey.

Based on recommendations from the state botanist in 2016, a subset of rare plant sites will be surveyed annually, and each site monitored every three years. Hence, the numbers presented in the tables cannot be evaluated as trends in the species. State-listed plants were surveyed at seven sites for *Ophioglossum pusillum* or *Triosteum perfoliatum* in TY 2018. Neither species was found at any of the sites. Some of these sites haven't had rare species present since the early 2000s, and can now be removed from our monitoring schedule. Technicians took notes on the condition of these sites including the overgrowth of trees or shrubs that may now be precluding the presence of the rare species at the site. The condition of the historically occupied sites can give us indications of the factors limiting the species.

In TY 2018, acoustic bat recordings were made and detections will be reported to NHESP after qualitative evaluation is completed. This is expected to be contracted in Fiscal Year 2019. Annual bird surveys including focused state-listed species efforts were contracted and coordinated with MassWildlife.

Grassland bird numbers only include birds counted during official surveys to reduce multiple counting of individuals. There were no Vesper Sparrows observed in TY 2018. As of TY 2016, the number of Whip-poor-wills reported reflects the lowest number (between two observers) heard per site during a single round of surveys to remain conservative in reporting. It is of note that only a single Whip-poor-will survey night was completed due to assisting DFW on active netting of Whip-poor-wills for a migration study. In prior years, reported numbers have included multiple surveys, and likely repeated counts. The TY 2018 survey resulted in the most Whip-poor-wills of any year the Natural Resource Office has run the NHESP Northeast Nightjar Survey (110 individuals). The survey also documented five Chuck-will's-widows, a Common Nighthawk, an Eastern Screech Owl and nine Northern Saw-whet owls. Harrier sightings were not counted as the species is constant and conspicuous throughout the non-breeding season with much uncertainty to individuals, and NHESP no longer accepts non-nesting reports of this and other raptor species. The raptor species are still noted when identified and included in reporting summaries as in Table 3-1, but caution is warranted in interpretation as some species such as Northern Harrier and Sharp-shinned Hawk are utilizing habitats whereas all Bald Eagle observations have been of flying individuals not apparently foraging or staying on site.

See Section 3.3.4 for information regarding clam shrimp (*Branchiopoda: Spinicaudata*) observations, and Table 3.1 for reporting of the state-listed clam shrimp *Eulimnadia agassizii*.

TABLE 3-1 LIST OF RARE SPECIES REPORTED TO NHESP						
Individuals Reported						
Common/Scientific Names	TY 2014	TY 2015 Biri	TY 2016 DS	TY 2017	TY 2018	
Grasshopper Sparrow (Ammodramus savannarum)	37	100	59	44	47	
Northern Harrier ¹ (Circus cyaneus)	7	Wintering	Wintering	Wintering	Wintering	
Upland Sandpiper (Bartramia longicauda)	7	22	20	23	20	
Sharp-shinned Hawk ¹ (Accipiter striatus)	2	1	0	0	0	
Long-eared Owl ¹ (Asio otus)	1	0	0	0	0	
Vesper Sparrow (Pooecetes gramineus)	1	0	0	0	0	
Whip-poor-will ² (Antrostomus vociferous)	156	96	87	52	110	
Bald Eagle ¹ (Haliaeetus leucocephalus)	0	3	0	0	0	
	REPTILES	and AMPHIB	IANS			
Eastern Box Turtle (Terrapene carolina carolina)	15	13	38	42	43	
	0	DONATES				
Comet Darner ³ (Anax longipes)	5	0	N/A	N/A	N/A	
Spatterdock Darner ³ (Aeshna mutata)	0	0	N/A	N/A	N/A	
		PLANTS				
Adder's Tongue Fern ^{4,6} (Ophioglossum pusillum)	1467	256	98	247	0	
Broad Tinker's Weed ^{5,6} (Triosteum perfoliatum)	297	N/A	113	127	0	
American Arborvitae ⁹ (Thuja occidentalis)	0	4	4	N/A	N/A	
BUTTERFLIES and MOTHS ¹¹						
Barrens Buckmoth (Hemileuca maia)	4 clusters	13	90	95	0	
Pine Barrens Speranza (Speranza exonerata)	0	0	44	13	0	
Sandplain Euchlaena (Euchlaena madusaria)	0	0	3	7	0	
Coastal Swamp Metarranthis (Metarranthis pilosaria)	0	0	1	1	0	

TABLE 3-1 LIST OF RARE SPECIES REPORTED TO NHESP, cont'd						
	Individ	uals Reporte	d			
Common/Scientific Names	TY 2014	TY 2015	TY 2016	TY 2017	TY 2018	
		BIRI	DS			
Melsheimer's Sack Bearer (Cicinnus melsheimeri)	0	0	2	0	0	
Gerhard's Underwing (Catocala herodias)	0	0	33	10	0	
Pine Barrens Zale (Zale lunifera)	0	0	13	8	0	
Barrens Dagger Moth (Acronicta albarufa)	0	0	1	0	0	
Drunk Apamea (Apamea inebriata)	0	0	1	0	0	
Pink Sallow (Psectraglaea carnosa)	0	0	9	5	0	
Pink Streak (Dargida rubripennis)	0	0	25	0	0	
Unexpected Cycnia (Cycnia inopinatus)	0	0	0	1	0	
Coastal Heathland Cutworm (Abagrotis benjamini)	0	0	0	1	0	
Pine Barrens Lycia (Lycia ypsilon)	0	0	0	2	0	
Water-willow Stem Borer (Papaipema sulphurata)	0	0	0	1	0	
Waxed Sallow Moth (Chaetaglaea cerata)	0	0	0	2	0	
Frosted Elfin (Callophrys irus)	0	0	5	5	5	
CRUSTACEANS						
Agassiz's Clam Shrimp ¹⁰ (Eulimnadia agassizii)	0	1	0	6	38	
MAMMALS						
Northern Long-Eared Bat ^{7,8} (Myotis septentionalis)	8	21 (2)	15 (1)	TBD	TBD	
Little Brown Bat ⁷ (Myotis lucifugus)	4	40	22	TBD	TBD	
Tricolored Bat ⁷ (Perimyotis subflavus)	11	11	7	TBD	TBD	

TABLE 3-1 LIST OF RARE SPECIES REPORTED TO NHESP, cont'd

¹ NHESP is only accepting reports of nesting raptors, rather than opportunistic observations of individuals. Reports are provided as relevant, but common wintering birds or migrants are not individually tracked or reported (e.g., Northern Harrier). ² As of TY 2016, quantities only reflect the results of annual survey routes during May, after totaling the minimum number (between two observers) heard at each site. In prior years, the number shown reflects the quantity reported to NHESP, which may include multiple survey windows and repeated counts. ³ Spatterdock Darner is no longer on NHESP's rare species list. Also, Odonate surveys were suspended after TY 2015. ⁴ Several known Ophioglossum sites could not be surveyed in TY 2016 due to a lack of cease-fire agreement with the off-base Monument Beach Shooting Club. 5 Surveys performed in 2015 did not differentiate Triosteum perfoliatum from T. aurantiacum, greatly increasing the number of individuals counted. For this reason, Triosteum perfoliatum was not reported to NHESP in 2015. 6 In 2018, only sites with historic records and no recent records were surveyed, and this should not be interpreted as a loss of rare plants between 2017 and 2018. ⁷ Acoustic monitoring collects "call sequence" data and the true number of individuals is unknown. Numbers in the table reflect the number of survey sites with acoustic detections. Numbers are reported to NHESP, but not tracked by them due to current uncertainty in using acoustic identifications. TY 2017-2018 data is still being processed, these numbers are to be determined at a later date (TBD). ⁸ Number in parentheses is captured individuals trackable by NHESP due to species identification confirmation versus acoustic data. ⁹ NHESP is not interested in tracking this population, as it is likely of anthropogenic origin (pers. comm. with State Botanist, Bob Wernerehl). ¹⁰ Numbers represent only locations where species was found and ID confirmed by either NHESP Aquatic Ecologist or trained MAARNG staff. ¹¹Moths were extensively surveyed under contract with the Lloyd Center for the Environment between 2016 and 2017. There were no surveys in 2018, and MAARNG staff is not recording flight records of Barrens Buckmoth, as they are ubiquitous around the Reserve.

3.3.2 Northern Long-Eared Bat (NLEB)

The NLEB was federally listed as threatened in May 2015. The listing is primarily due to the severe population crashes (estimated greater than 95%) caused by white-nose syndrome. The extent of population loss drives concerns for impacts on individuals and maternal roost sites throughout the eastern United States. Recent survey efforts have suggested that NLEB are persisting better in coastal areas of the Northeast than any of the rest of their range. Because of this, there is a strong focus on surveys and conservation on Cape Cod and the Islands, Long Island, and coastal New Jersey. A NLEB was discovered on Martha's Vineyard in February 2016 and acoustic hits for NLEB on base in March and November suggest bats may be overwintering on the island and Cape Cod. If they are utilizing a different type of hibernacula than the caves utilized inland, it could have huge implications for the recovery of the species. Caves allow the spread and growth of white-nose, but a different type of hibernacula may be allowing coastal bats to avoid white-nose syndrome leading to the greater numbers of bats in coastal areas.

In TY 2018, 10 sites were acoustically monitored, including two sites off-base where Natural Resource Program staff attempted to survey for NLEB hibernating on Cape. Four of these sites were chosen for long-term monitoring through the winter and into TY 2019, including two that have been recording since 2015. In TY 2019 program staff will aim to acoustically monitor the state listed species *Perimyotis subflavus* (also being considered for federal listing), as it is a high-flying species that requires different methods than those used to monitor NLEB. Currently, Tetra Tech is analyzing acoustic results from previous years.

The Army National Guard completed a programmatic informal consultation for NLEB addressing small projects implemented by MAARNG at all managed locations to include actions less than 5 acres and incorporating conservation measures. The USFWS concurred with the Army National Guard determination on October 8, 2015 and small projects are kept within the scope of that agreement. Three projects were implemented that exceeded the programmatic consultation, all of which had MAARNG Environmental Affairs elements as proponent. These included the implementation of prescribed burns, an August timber harvest in low quality NLEB habitat, and placement of new groundwater wells in multiple locations during the summer. A significant investment in equipment, personnel training, and collaboration continued in TY 2018 to address concerns both over avoiding impacts to bats and minimizing bat impacts on ongoing actions such as pine barrens habitat management.

3.3.3 New England Cottontail Rabbit Study

The Natural Resources Office began a study in TY 2010 on the New England cottontail rabbit (*Sylvilagus transitionalis*), at the time a candidate species for federal listing. Original study objectives were to determine the home range and habitat preferences of the species. This information can be used regionally to influence effective management efforts for this potential species. Current and future efforts are transitioning more from research into population monitoring, though with a strong emphasis on evaluating the effects of habitat management on cottontails. New England cottontails occur throughout suitable scrub oak habitat across Camp Edwards.

On September 11, 2015, the USFWS announced a "not warranted" finding for the New England cottontail. This initiates a 12-month review period for the decision, at which point the species will be removed from the federal candidate list and not added to the Endangered Species List unless substantial new information is received. The finding is based upon the conservation implementation enacted and future commitments by the large regional partnership, including MAARNG and Camp Edwards. Continued habitat management and monitoring are critical to New England cottontail success and keeping the species from being federally listed.

In TY 2016, the MAARNG contracted wildlife detection dogs to search for rabbit pellets. The dogs surveyed both on base and off base sites. The dogs readily found pellets at the off base sites and two on-base sites along the powerlines along the western edge of the base. At several sites on base that had previously had rabbits, the dogs did not find rabbit sign. At one site, the dogs found sign, but not during all repeated surveys. This data could suggest a lower density of rabbits or a higher extinction rate at more interior sites. More interior sites tend to have more native habitat. To further explore the factors driving this, the Natural Resources Office sent fecal samples for diet analysis in TY 2017. If certain sites are supplying more suitable forage, it is likely they are able to support more rabbits. The Natural Resources Office sent more fecal pellets from both on base and off base sites in TY 2018 for diet analysis to explore seasonal variations and site differences in diet. The low diversity of food resources at interior base sites with more native vegetation may be limiting the density of rabbits on base. The results of the diet analysis should provide useful information to use for on base restoration sites and for regional partners.

As part of the regional pellet search effort coordinated by the New England Cottontail Technical Committee, technicians conducted pellet searches at four regional plots throughout the training area. Ten-acre regional plots were surveyed two times each. Pellets were found and collected at three plots for DNA analysis by URI, a total of 23 samples. All but two samples from regional plots were Eastern cottontails. Incidental collections, mainly aimed at diet analysis, resulted in 140 samples, 64 of which were New England cottontail.

FLR-V GPS collars from Telemetry Solutions were used during trapping efforts in TY 2018. Of nine trapped rabbits, seven were collared and tracked, of which only three were New England cottontails. All of the rabbits tracked in the Reserve were Eastern cottontails, the three New England cottontails were trapped in Sandwich and Mashpee by DFW staff in a collaborative effort to test collar performance.

The Natural Resources Office continued active participation on the Technical Committee, working with partners to prioritize and develop actions and efforts to implement the conservation strategy for the species. In Fiscal Year 2019, the Natural Resources Office plans to contract statistical analysis and reporting for the New England cottontail data compiled thus far.

3.3.4 Agassiz's Clam Shrimp

Clam shrimp were discovered in roadway puddles on base in TY 2015 and continue to be present on Camp Edwards during TY 2018. Initial attempts at identification indicated the clam shrimp could be two state listed species, *Eulimnadia agassizii* and *Limnadia lenticularis*. In TY 2018, the NHESP Aquatic Ecologist, Peter

Hazelton, confirmed *E. agassizii* in multiple roadway puddles along with the non-listed *Cyzicus gynecea*. *Limnadia lenticularis* has not been identified on base.

E. agassizii occurs in roadway puddles on base. These sites are most often heavily trafficked, unvegetated puddles created by roadway compaction. Several puddles along Herbert and Cat Roads have become large enough to impede use for training. The Natural Resources Office worked with the NHESP and Oxbow Associates to create a Conservation and Management Plan (CMP) to address the necessary road repairs and provide net benefit for the species. The plan includes several components: habitat creation, experimental treatments, and monitoring.

The CMP calls for the creation of a puddle along the Tank Trail to relocate clam shrimp from Herbert Road. This puddle was created in the fall of 2018 and has been successfully holding water. The relocation of egg-bearing sediment will occur in the late fall/winter of 2018-19. The experimental treatment will determine if the species can be managed in place to allow for training use and clam shrimp habitat by maintaining shallow puddles. In the spring of 2019, two sites along Cat Road will have egg bearing sediment scraped, fill will be added to the puddle, and then the sediment will be laid back in place. Additionally, an existing puddle on Canal View Road will be used to relocate clam shrimp from Cat Road puddles. This relocation puddle has not been documented to have clam shrimp, likely due to the greater depth and lack of disturbance allowing a higher density of predatory amphibians and invertebrates. The Natural Resources Office will add material to the puddle before placing eggbearing sediment on top.

Due to actions taken by a training unit in the field, one puddle with clam shrimp planned for filling in the CMP was prematurely filled in the course of soldier training activities. Although this kind of work is normally reviewed by Natural Resources staff, the filling was executed without pre-review and coordination with Natural Resources staff. The event and circumstances were reported to NHESP immediately and it was advised that the activity be integrated into the CMP permit application. In response to this event, the Natural Resources Office agreed with NHESP staff on additional monitoring and signage to prevent future incidents. Signage has been put in place to alert users of the presence of the rare species and to direct communications with the Natural Resources Office. Monitoring has also increased one additional year, two additional sites per year, and more frequent monitoring each year.

In TY 2018, Mr. Hazelton visited Camp Edwards, viewed some of the known clam shrimp locations, and trained MAARNG staff in proper identification of the species likely to be encountered in the Reserve. The Natural Resource Office also received a collection permit to sample clam shrimp on MAARNG lands or any lawfully entered lands in Massachusetts. The first of three years of monitoring required in the CMP was completed in TY 2018. The Natural Resource Office conducted repeated surveys (biweekly or monthly depending on season) at ten puddles, some known to have had clam shrimp. Pools were measured for area, depth, temperature and pH, and all aquatic life was recorded. These surveys led to three newly documented *Eulimnadia agassizii* sites. The methodology used was coordinated with Peter Hazelton at NHESP as part of the CMP process.

In addition to the monitoring required in the CMP, technicians searched for clam shrimp in many more road puddles in the Reserve and, based on good success, expanded the search off-base. In TY 2018, the Natural Resource Office field crew was able to document *Eulimnadia agassizii* at 38 new puddles (17 of which were in the Reserve) across seven properties, seven towns, and three counties. Previously the species had only been known from six towns in Massachusetts (two being historical records), two newly discovered locations in New York, two records in Ontario, a museum specimen in Virginia, and an aberrant collection in Florida. Samples were preserved and will be sent to NHESP for their collections.

3.4 SOIL CONSERVATION MANAGEMENT

All military and civilian uses and activities in the Reserve during the year were reviewed by the Natural Resources Office to ensure that they were compatible with the limitations of the underlying soils. All users were instructed to report evidence of soil erosion to Range Control so that potential repairs to roads, bivouac areas and well pads could be identified in a timely manner. None of the existing unimproved roads in the Reserve were made into improved roads as a result of IAGWSP remediation activities during the year. Additionally, any maintenance on unimproved roads during the year did not involve paving the roads.

3.4.1 Erosion

The Integrated Training Area Management Program (ITAM) worked with Camp Edwards Facilities Engineering and troop labor to conduct limited erosion management on established maneuver trails. No significant projects were conducted.

3.5 VEGETATION, HABITAT AND WILDLIFE MANAGEMENT

The Natural Resources Office manages for a diversity of natural communities, plants, and animals. This supports a sustainable training area for military training and high quality habitat for rare species (above) as well as common ones. Particular emphasis is on maintenance or expansion of earlier successional habitats (e.g., grasslands, shrublands, and young forests) due to the conservation value of these habitats and rapidity at which they are lost to trees or other influences. Mechanical restoration, prescribed fire, resource monitoring, invasive plant management and others are important tools used here. During TY 2018, two timber harvests restored low habitat value, densely wooded units to historically appropriate savannah conditions, two battle positions were cleared of densely regenerated woody vegetation and reseeded with native grasses, multiple primary prescribed burn operations were conducted, and invasive plant management was continued after emphasis on planning and personnel training and licensing. Additionally, six permits were maintained to continue wildlife and fire operations.

Efforts to collect habitat management information for trends analysis were initiated in 2013 and will be continued. Additionally, overall bird surveys were revised in 2013 to use static point-counts and transects through the training area to specifically provide long-term trend data over time and intentionally cover specific categories of training areas and habitats for evaluation of site use and impacts. As sufficient data has been collected and additional efforts are begun, those trends will be reported. With six years of bird monitoring data, Natural Resource Office staff are currently in the early process of evaluating trends for focal species.

3.5.1 Vegetation Surveys

No vegetation surveys were conducted in TY 2018. Vegetation surveys for New England cottontails are based on radiotelemetry locations. This year only one Eastern cottontail was collared on base, so vegetation surveys were not completed. Fire monitoring plots were not completed this year. Land navigation surveys are performed on an as needed basis and were completed in TY 2017.

3.5.2 Invasive Plant Species Control Activities

Invasive plants can be native or non-native species that have spread into natural, minimally managed or disturbed plant systems in Massachusetts. They can cause economic or environmental harm by developing self-sustaining populations and becoming dominant and/or disruptive to those systems. As defined here, "species" includes all synonyms, subspecies, varieties, forms, and cultivars of that species unless proven otherwise by a process of scientific evaluation; from the Massachusetts Invasive Plants Advisory Group (MIPAG).

Exotic invasive plants are a management concern both in the training area and within the Cantonment area. Effective management of these species, including autumn olive (*Elaeagnus umbellata*), Oriental bittersweet (*Celastrus orbiculatus*), and shrub honeysuckles (*Lonicera spp.*), is both labor and cost intensive. Natural Resources-ITAM has two trained and licensed Massachusetts core pesticide applicators on staff. With this capability, Natural Resources-ITAM representatives carried out targeted, high-impact herbicide applications at several sites, in the Reserve as well as the Cantonment area. These actions have likely prevented several new species from becoming established on base. ITAM also conducted hand pulling to remove spotted knapweed (*Centauria stoebe*) from restored training sites on BPs 1, 27, 28, and Demo 2, covering 11 acres.

The Natural Resources-ITAM Program field technician actively surveyed the training and Cantonment areas for invasive species, expanding the invasive plant geodatabase. This is an ongoing project that is used to prioritize and record invasive plant control operations, and will tie in with the creation of an updated integrated pest management plan. Field crews maintained updated knowledge of, and monitored for MIPAG Early Detection Priority species, including mile-a-minute vine (*Persicaria perfoliata*), as there are several populations at nearby Crane Wildlife Management Area. Field personnel also continued mapping populations of *Calamagrostis epigejos* (bushgrass), an invasive grass recently found on base. Personnel coordinated regularly with the Massachusetts Division of Fisheries and Wildlife in developing strategies to manage invasive plants, particularly *C. epigejos*, a species that isn't well-known. In TY 2018, Lavoie Horticultural was contracted to eradicate *C. epigejos* from approximately two acres of roadside sites in the Reserve. Treatment sites will be monitored through TY 2019, but initial results appear successful. Concurrently, Natural Resources Office staff began treatment of patches in areas harder to access. Several new, large patches were discovered this year.

The Natural Resources Office is involved in a multi-year effort to stop the spread of black swallow-wort (*Cynanchum louiseae*) from a single one acre location in the training area. This was the third year of chemical treatment, and a mistblower was used for getting the best coverage possible. This species is highly invasive in grasslands as well as forest, and can interrupt the life cycle of monarch butterflies, so keeping it from spreading in the Reserve is a high priority. Elsewhere in the training area, roadside invasives were treated with cut-and-paint methods in areas deemed high-risk for off-road spread.

Soil disturbance in the training area, particularly in groundwater treatment areas, bivouac areas, dig sites, or along road sides, is often first colonized by pitch pine. As a pine barrens species adapted to wildfires, pitch pine is capable of colonizing highly disturbed soils with little organic matter. The establishment of this species at sites can often lead to the exclusion of other species creating monocultures of little ecological or training value. Hence, in efforts to restore former training areas and create or improve habitat, the Natural Resources and ITAM Office often needs to manage this species to allow the growth of other species, providing improved habitat quality and site sustainability. To this end, ITAM contracted and conducted in-house mechanical removal of regenerated pitch pine in two battle positions, followed up by reseeding with a native grass mix (see Section 3.5.6). The Natural Resources Office also conducted mechanical and chemical control of pitch pine in the Cantonment grasslands.

Many rare plant sites are being encroached by invasive species or overshadowed by native species. In TY 2017, the Natural Resources Office contracted Wilkinson Ecological Design to complete a Vegetation Management Plan for invasive species treatment in rare plant sites and complete the associated MESA permitting. In 2017, Wilkinson completed the site visits and prepared a Vegetation Management Plan, which has since been approved by NHESP. In TY 2018, Wilkinson performed chemical treatment of all invasive plants found at rare plant sites. Natural Resources Office staff performed follow-up treatments where necessary, and will continue to monitor the sites in TY 2019.

3.5.3 Bird Surveys

This is the sixth year that point counts were conducted along a bird survey route throughout the training area to determine differences in bird activity in a variety of military training areas and habitat types. The routes consisted of 39 sites that were each visited three times to reduce the likelihood of species being undetected. The calculation of detection probabilities for species of survey concern were not calculated in TY 2018 due to other priorities. This will be an objective in our updated Integrated Natural Resources Management Plan (INRMP) and prioritized as needed given other projects. Additionally, with the completion of six years, we will start evaluating trend data as able, prioritizing species of significant conservation interest.

Whip-poor-wills (*Antrostomus vociferus*) and other nightjars were surveyed on May 17 for the region at 35 sites (three routes). In TY 2018, Whip-poor-wills were detected at 34 out of 35 sites. Conditions appeared to be less than desirable for nightjar surveys, but Natural Resources Office staff documented at least 110 Whip-poor-wills, five Chuck-will's-widows, and a Common Nighthawk. These numbers make TY 2018 our most productive year for nightjar surveys. One Eastern Screech Owl and nine Northern Saw-whet Owls were also recorded.

For the fourth year, a point-count methodology was implemented to participate in a state-wide survey of grassland birds coordinated with the DFW and Mass Audubon. This method is intended to be continued to better evaluate trends in grassland bird populations.

The Natural Resource-ITAM office assisted DFW on an additional Whip-poor-will project in TY 2017 and 2018 focused on migratory pathways and behaviors of the state-listed species. Two nights of mist-netting were conducted to support the State Ornithologist with the project. Several Natural Resource-ITAM staff and supporting volunteers participated both nights and extensive site scouting and support were provided. A total of seven Whip-poor-will were captured and tagged with geolocators (purchase funded by MAARNG NR-ITAM as partner support) and recapturing of birds to recover tags will be conducted in the summer of 2019. Only one of eight geolocator-equipped birds from 2017 was recaptured and data analysis is ongoing. Camp Edwards is one of multiple study sites in the Commonwealth for this project.

The Natural Resources Office continued support of a DoD Legacy Grant project awarded to the Vermont Center for Ecostudies, focused on grassland bird migration. The active portion of the grant-funded project was completed in TY 2017. The last satellite-transmitting Upland Sandpiper from Massachusetts stopped broadcasting while on her wintering grounds in Brazil in late March, 2018. Additionally no banded or transmitter-bearing Grasshopper Sparrows, Eastern Meadowlarks, or Grasshopper Sparrows were identified during annual bird surveys and opportunistic searching for bands.

3.5.4 Deer Hunt

There was a deer hunting season in the Reserve during TY 2018 in which 43 deer were taken during 825 hunter days. The Natural Resource Program supports a hunt sufficient to maintain a harvest level that is compatible with a healthy deer herd and healthy ecosystem. MAARNG and MADFW generally feel that the recent average of 60 deer per year meets the overall objective.

The Natural Resource Program continues to provide a variety of hunting opportunities to best engage the hunting community and encourage new hunters through events such as the youth day, archery, and military sportsmen hunt. Hunting during TY 2018 included a three-day hunt for paraplegic sportsmen (November 2-4, 2017), a one-day youth hunt (September 30, 2017), a two-day opening for archery scouting (November 13-14, 2017), a three-day archery season (November 16-18), a two-day hunt for military sportsmen (December 1-2, 2017), a six-day shotgun season (December 4-9, 2017), and a two-day primitive (muzzleloader) season (December 14-15, 2017). Graph 3-4 shows the hunter days and deer harvest ratio since TY 2009.

During TY 2018, the Conservation Biologist, Range Control Officer in Charge, and the EMC EO attended two meetings (spring and fall) of the Barnstable County League of Sportsman Clubs to provide information on the deer and turkey hunts at Camp Edwards and receive feedback from members related to hunting at Camp Edwards. During TY 2019, the Natural Resource Program will continue outreach to hunters including conducting a hunter survey during the 2018 deer season. The survey will evaluate hunter preferences and will include questions aimed at determining the best ways to distribute information to hunters.

The goal of the hunt program is to provide recreational opportunities to the public and military and to harvest deer for the health of the herd and for ecosystem management. With the update of the INRMP in TY 2019, specific goals for harvest will be discussed based on past biological data from deer harvested on base and browse surveys aimed at determining habitat impacts.

Graph 3-4 Camp Edwards Deer Harvest

Note: Hunter Days is the sum of the number of hunters each day for each day of the annual hunt.

3.5.5 Wild Turkey Hunt

There was a five-day wild turkey hunting season in the Reserve from May 7-11, 2018 during which 86 hunters took seventeen turkeys. In addition, a one-day youth turkey hunt was held on April 28, 2018 in which seven youths participated with two turkeys taken. Graph 3-5 provides information on the wild turkey hunts conducted in the spring since TY 2008.

Graph 3-5 Camp Edwards Turkey Harvest

Note: Hunter Days is the sum of the number of hunters each day for each day of the annual hunt.

3.5.6 Restoration Activities

Through the ITAM program, the Natural Resources Office completed significant restoration work on four training sites and habitat patches throughout the base. In the largest project, contractors conducted mechanical thinning of 48 acres of Training Area C-14, restoring maneuver connections between the C-14 Bivouac Site and Demo 2. This training-driven project removed all standing trees smaller than 12" DBH (diameter at breast height), removing low value uniform habitat and restoring the site to a historically appropriate patchy savannah-like setting. The skid trails resulting from the project were contracted for reseeding using the custom Camp Edwards restoration seed mix created by Lavoie Horticulture.

Two additional training-driven projects removed overgrown vegetation from Battle Positions 11 and 20 in order to return them to their original training condition. Battle Position 20 was conducted using in-house ITAM resources and removed two acres of regenerated pitch pine that had almost completely overwhelmed the site, making it totally unsuitable for training. The Battle Position 11 project was of higher complexity and was contracted. The contractor grubbed out 2.5 acres of densely regenerated pine in the middle of BP-11 and restored it to exposed mineral soil. A further 6.5 acres of BP-11 were mechanically thinned to remove dangerous standing dead trees, fire-stressed trees unlikely to survive, and overly thick scrub oak understory that prevented troop access. Both BP-20 and the central 2.5 acres of BP-11 were contracted for reseeding using the custom Camp Edwards restoration seed mix created by Lavoie Horticulture.

The final major project of the year was a 14 acre fuels-management thinning project in the Range Area West 4 unit, adjacent to the southwestern corner of the impact area. Contractors cleared most of the trees in the unit, leaving standing all hardwoods and any pines over 10" DBH. The resulting savannah conditions are significantly safer from a wildfire perspective, will provide greater habitat value than the previous conditions and enhance the diverse habitat mosaic we have been constructing in the western impact area buffer units. Both the C-14 and RAW-4 thinning projects went through Forest Management Plan submission to DCR, which includes MESA review and permitting.

Natural Resource and ITAM staff also conducted rehabilitation and maintenance projects using in-house staff and equipment. Staff conducted understory mowing to improve bivouac and maneuver potential at OPs 9, 10 and 11, and BA-6. Additionally, staff hand-pulled and sprayed woody invasives encroaching on BPs 1,8,27,28, and Demo 2.

Staff also collected seed from regionally uncommon plant species. Species included butterfly milkweed (*Asclepias* tuberosa), wild lupine (*Lupinus perennis*), flax-leaved stiff-aster (*Ionactis linariifolia*), and sickle-leaved golden-aster (*Pityopsis falcata*). Seed received several treatment types, including a grow operation at Bristol County Agricultural High School's Natural Resource Management department, and then was distributed in several training sites and the Cantonment grasslands in order to increase biodiversity. Wild lupine will be planted in early 2019 in order to provide security for the species in the Reserve, where it has only persisted in one small location.

3.6 FIRE MANAGEMENT

3.6.1 Prescribed Burn Program

The Natural Resources Office utilizes a prescribed burn program to manage habitat, reduce fuel loads and help prevent wildfires. The program is outlined in the Camp Edwards Fire Management Plan which is available on the E&RC's website: www.EandRC.org.

Five prescribed fires were conducted during TY 2018 within the Reserve and one within the Cantonment grasslands. The burn operations totaled 300 acres within the Reserve and 24 in the grasslands and were conducted in the fall of 2017 (three) and spring and summer of 2018 (three). The ten-year prescribed fire accomplishment within the Reserve is shown in Graph 3-6. The Camp Edwards smoke management permit (#4F02008) was renewed August 20, 2018 and is valid through December 31, 2020. Goals for both number of burn operational days and acres burned were approximately double what was accomplished. The primary limiting factor was weather/climate with more extreme fluctuations in weather conditions (e.g., extended drought broken by extreme rain events) and more frequently shifting weather conditions – particulalry with respect to wind and precipitation. Shifting weather forecasts led to multiple instances within TY 2018 of planning and notifying of burn operations with favorable weather forecast, followed by cancellation due to unsuitable conditions developing.

Prescribed fire goals for TY 2019 are again to have at least eight operational days and burn approximately 600 acres or more of pine barrens (550+ acres) and grassland habitat (40-60 acres). Significant programmatic emphasis has been placed on burning units in the Impact Area buffer and immediately outside this buffer zone. This serves to maximize the mutual benefits and objectives of every operation – improving and maintaining pine barrens habitat, reducing hazardous fuel loading and wildfire potential, and improving training lands for soldiers.

Graph 3-6 Prescribed Fire Accomplishment within the Reserve

Note: Training Year acreage is graphed on the left and the number of burns is graphed on the right axis. Grassland burns are excluded.

3.6.2 Fire Management Training

The 2018 fire training was the first of its kind, focusing primarily on providing basic wildland firefighter training to the members of the JBCC Fire Department and other local departments. All students completed the S-130/S-190 (Firefighter Training and Introduction to Wildland Fire Behavior) suite of trainings. The class was structured around the rotating schedule of fire department shifts. Classroom and field days were separately offered over four days, each scheduled to coincide with one of the four shifts of JBCC Fire Department. Students completed the online portion of the blended class prior to attending the classroom. The one-day classroom session provided an overview of the material covered in the online class with a focus on local factors. The classroom sessions were followed up by four one-day field exercises. Each field day, students engaged in live fire exercises including hand line construction, suppression techniques and ignition operations. A framework was provided for the non-JBCC Fire Department students who could not attend the field sessions to complete the field day requirement with their home agency or in their local area. In total, training was provided to 53 students from eight fire departments, three government agencies and two non-government organizations completed the online and classroom sessions. Thirty-two students completed the field sessions at Camp Edwards. Lead instructors were contracted through Northeast Forest & Fire Management, LLC. Assistant instructors were provided by MAARNG, DCR, and DFW.

3.7 PEST MANAGEMENT

During TY 2018, Natural Resources and ITAM conducted and contracted precisely targeted herbicide spraying of unwanted shrub species encroaching on training sites and invasive species threatening habitat in the Reserve. As part of controlling control pitch pine, sweetfern, bayberry, scrub oak, spotted knapweed, and *Calamagrostis epigejos*, contractors and staff applied Roundup Pro and Rodeo (Glyphosate), Alligare Triclopyr 3 (Triclopyr 3,5,6), and Intensity (Clethodim). Over the course of TY 2018, the following amounts of pounds of active

ingredients were applied to sites within the Reserve. Glyphosate: 38 lbs. Triclopyr: 12 lbs. Clethodim: 0.05 lbs. Natural Resources-ITAM also conducted cut-and-paint herbicide application on *Aralia elata* and used hand pulling to remove spotted knapweed (*Centauria stoebe*) from restored training sites on BPs 1, 27, 28, and Demo 2, covering 11 acres. Additionally, approximately 40 acres of managed grassland (outside the Reserve) had chemical management of invasive plants with Triclopyr combined with mechanical and fire management to maximize efficacy.

3.8 AIR QUALITY MANAGEMENT

3.8.1 Air Quality Permits

Potential air emissions from stationary sources at Camp Edwards are below the established federal and state thresholds for the designated primary air pollutants (carbon monoxide, nitrogen oxide, particulate matter, sulfur dioxide, and volatile organic compounds). Thus, Camp Edwards does not require an air quality control permit for stationary source emissions under the provisions of the Clean Air Act (CAA), nor is Camp Edwards required to measure and report actual emissions from its stationary sources. However, the prescribed burn program requires an air quality control permit.

The MassDEP Southeast Regional Office renewed the Camp Edwards smoke management and prescribed burn permit (#4F02008) on August 20, 2018. The permit is good through December 31, 2020.

3.8.2 Air Quality Reports

310 CMR (Code of Massachusetts Regulations) 7.12(2)(b) requires that any person having control of a fuel burning facility or facilities with a maximum energy input capacity of 10,000,000 Btu/hr of natural gas report certain information to MassDEP once every three years. Because of the number of facilities at Camp Edwards, the MAARNG is required to submit a Source Registration/Emissions Statement (SR/ES) report for Camp Edwards every three years on or before the date established by the MassDEP. The Camp Edwards SR/ES report was scheduled to be completed for June 1, 2018 using calendar year 2017 data. However, due to delays in MassDEP web forms availability, the reporting has been deferred until further notice by the MassDEP.

The only MAARNG stationary source emissions locations in the Reserve on Camp Edwards are Range Control and the Ammunition Supply Point.

Biennial smoke management reports administered by MassDEP require reporting and renewal submission at the end of each two year period. The Camp Edwards smoke management permit (#4F02008) was renewed August 20, 2018 and is valid through December 31, 2020. The biennial smoke management report is planned to be submitted in December 2018. Information on prescribed burn activities within the Reserve for TY 2018 is provided in Section 3.6.

3.9 NOISE MANAGEMENT

The MAARNG published a Statewide Operational Noise Management Plan in December 2007 that provides a strategy for noise management at MAARNG facilities, including Camp Edwards. The plan includes a description of noise environments, including levels from small arms and aircraft training activities. Elements of the plan include education, complaint management, possible noise and vibration mitigation, noise abatement procedures, and land use management. Specific procedures are provided for noise complaints and protocols are provided for providing public notification for blowing up unexploded ordnance in place and for other unusual noise events.

In June, a noise complaint was made via social media relating to nighttime training during the Combined Arms Exercise. During the training, a convoy took a wrong turn and became lost near a neighborhood by the fence line,

halting there until they could regroup. Camp Edwards' Administrative Officer responded to the complaint within 24 hours with all parties satisfied.

3.10 STORMWATER MANAGEMENT

There were no new stormwater runoff increases in the Reserve due to military training activities, and no new stormwater discharges from military training activities were made directly into wetland resource areas in the Reserve.

3.11 WASTEWATER MANAGEMENT

Depending on the location of facilities, wastewater and sewage from MAARNG training activities in the Reserve was pumped from portable toilet facilities and hauled off base for disposal at licensed disposal facilities or discharged through the normal operation of existing septic systems (1,000 gallon) at Range Control and the Ammunition Supply Point that are regulated by MassDEP. (Note: There is a septic system at the former Otis Fish & Game Club located on Camp Edwards in the southwestern corner of the Reserve; it is not in use at this time because the building is out of service. There are septic systems within the boundary of the Reserve, at Cape Cod AFS and the USCG Communications Station, that are not subject to Chapter 47 of the Acts of 2002 and the EPSs, but which are regulated by MassDEP.)

3.11.1 Wastewater Treatment Plant Discharge

The Otis ANGB wastewater treatment plant operated within the discharge volume limits of its wastewater discharge permit during TY 2018. The plant discharged 68,112,863 gallons of sewage into the sand filtration beds in the Reserve; a daily average of 113,000 gallons versus its permitted twelve-month moving average flow of 360,000 gallons. Graph 3-7 shows the daily average pumping rate of the Otis system since TY 2009.

Graph 3-7 Wastewater Treatment Plant Discharge

3.12 SOLID WASTE MANAGEMENT

The Camp Edwards Ammunition Supply Point did not turn in any ammunition casings for recycling to the Defense Logistics Agency office in Groton, Connecticut, during TY 2018. Casings are turned in periodically when economical.

The MAARNG published a Statewide Integrated Solid Waste Management Plan for all of its Army National Guard facilities in August 2010. The plan establishes MAARNG policy, responsibilities, goals, and objectives for compliance with statutory requirements for waste minimization, recycling and solid waste disposal. Chapter 8 of the plan includes solid waste management procedures specific to Camp Edwards, as well as identifying potential future solid waste management alternatives.

3.13 HAZARDOUS MATERIALS MANAGEMENT

Camp Edwards has appropriate protocols in place to respond to oils or hazardous materials releases, such as fuel spills, in the Training Area/Reserve. These protocols include the Soldiers Field Card that outlines how Training Area/Reserve users respond if a spill occurs, and Camp Edwards has trained staff to initiate all required spill response actions. All users of the Camp Edwards training lands, including civilians, are required to complete a series of Range Control briefings. Users are directed via verbal instruction, as well as in training videos, to report spills and/or releases of any size to Range Control immediately. There were no spills in the Reserve during TY 2018.

3.14 HAZARDOUS WASTE MANAGEMENT

The MAARNG complied with its policy of not performing maintenance activities on military vehicles in the Reserve throughout the year. Thus, hazardous wastes normally associated with vehicle maintenance and repair facilities were not generated or stored in the Reserve. Vehicle maintenance is completed at the UTES facility, which is outside of the Reserve. In instances where the Installation Restoration Program (IRP) or IAGWSP use the EPA identification number of the MAARNG to dispose of wastes generated by remediation activities in the Reserve, the E&RC tracks the procedure to ensure compliance with applicable regulations.

There is one hazardous waste Satellite Accumulation Point in the Reserve, established at Range Control in January 2012. Range control accumulates one 55-gallon drum of weapons cleaning rags and patches, and one 55-gallon drum of clean up debris of automotive fluids (i.e. rags, speedy dry and soil contaminated with gasoline, diesel and/or oil). Wastes generated at the Range Control Satellite Accumulation Point are minimal, with a slight increase during Annual Training. On average, the Range Control Satellite Accumulation Point will generate one full 55-gallon drum of waste annually.

3.14.1 Hazardous Waste Disposal and Reporting

A biennial Hazardous Waste Report must be prepared and submitted to EPA and MassDEP in March of evennumbered years reporting on hazardous waste generated by large quantity generators (LQG) during the preceding odd-numbered year. The last report for Camp Edwards was in February 2018 for hazardous waste disposed of during calendar year 2017. Graph 3-8 provides information on the volumes of hazardous waste disposal reported for the past six biennial reports. In addition to the amounts generated and reported in the biennial report, the MAARNG removed approximately 4,400 tons of lead-contaminated soil as part of the IAGWSP cleanup effort in 2017. This material was not reported as part of the biennial report as it was exported to Canada and hazardous waste exported outside the US is not required to be reported in the biennial report.

Graph 3-8 Hazardous Waste Disposal – Camp Edwards

3.15 VEHICLE MANAGEMENT

Unauthorized All Terrain Vehicle (ATV) and dirt bike access to the Training Area continued to be a problem in TY 2018. Range Control officials provided information to the Environmental Police as to locations and times such use was identified to help them adjust their patrols accordingly. As the level of unauthorized ATV and dirt bike access increases, continued coordination with the Environmental and local police takes place. Current efforts have seemed to slow the illegal use of the Reserve for ATV and dirt bike riding. However, this will be an ongoing effort.

3.16 GENERAL USE AND ACCESS MANAGEMENT

The Natural Resource Office hosted two grassland bird tours in the grasslands of Camp Edwards in 2018 on May 26 and June 2 with approximately 20 individuals per tour. The tours were conducted as part of the Sustainable Range Awareness program, a component within the ITAM program. The Sustainable Range Awareness program serves to educate the public on the success of natural resource management taking place on Camp Edwards in support of the military mission.

3.17 CULTURAL RESOURCES MANAGEMENT

All projects in the Reserve during TY 2018 were reviewed to ensure appropriate cultural resources requirements were followed.

The IAGWSP processed Records of Action (ROAs) for monitoring wells, soil sampling, geophysical survey and munitions removal in TY 2018. Several of the new ROAs involved activities in areas of moderate sensitivity for cultural resources and required consultation with federally recognized tribes (Aquinnah and Mashpee Wampanoag). Required consultations with federally recognized tribes and the SHPO are completed in advance of any MAARNG and IAGWSP program undertakings for any actions in areas designated as High or Moderate Sensitivity.

Additional information on the IAGWSP's investigation and cleanup activities is available on its website: http://jbcc-iagwsp.org.

3.18 EPS VIOLATIONS

On May 16, 2018, the MAARNG reported a violation of the EPSs, specifically EPS 3.1 and EPS 3.4, under the Rare Species Performance Standard. On April 7 and April 8, 2018, the MAARNG 379th Engineers were training at Dig Site 1 and graded a portion of Cat Road containing a road puddle with state-listed Agassiz clam shrimp (*Eulimnadia agassizii*). On May 10, 2018, MAARNG Natural Resource staff identified the filing while assessing the condition of Cat Road. Camp Edwards Headquarters was notified and the EMC was notified on May 14, 2018. Camp Edwards will, after relocation of the clam shrimp and in concert with the CMP, fill the puddles, use signage to avoid infilling of relevant puddles, and educate users as to how they are supposed to coordinate with Camp Edwards before taking actions outside of their training plan while in the Reserve. Signage has been put in place to alert users of the presence of the rare species and to direct communications with the Natural Resources Office. Monitoring has also increased one additional year, two additional sites per year, and more frequent monitoring each year. In a letter dated December 19, 2018, the EMC's Environmental Officer determined that in consideration of the actions taken by the MAARNG and the CMP issued by MADFW, no additional actions are necessary by the MAARNG for compliance with the requirements of Chapter 47 and the EPSs with regard to this violation.

Please see Section 3.3.4 for further discussion.

Appendix G lists violations reported since TY 2002.

3.19 MITIGATION

There are no outstanding mitigation agreements within the Reserve. New mitigation plans have been developed as part of the Conservation and Management Permit for the roadway repair and clam shrimp relocation project with NHESP. The mitigation plan is a combination of clam shrimp monitoring and a novel investigation of clam shrimp management. The management will have multiple approaches to evaluate effective methods. Methods include "hardening" occupied puddles with rock and leaving clam shrimp in place, relocating clam shrimp from puddles to be filled to "hardened" existing roadway puddles, and relocation of clam shrimp from puddles to be filled to a newly constructed puddle on an old tank trail.

Additional mitigation requirements will be developed through the coming training year with designs for multiple range projects and facility improvement projects being planned within Priority Habitat.

3.19.1 Grasslands Restoration (Otis ANGB)

One of the requirements levied by the Secretary of the Executive Office of Environmental Affairs' July 16, 2001 Certificate approving the Massachusetts Military Reservation (MMR) Master Plan/Environmental Impact Report was a commitment by the MAANG to develop and implement a Grasslands Management Plan for its property in the Cantonment Area on Otis ANGB. The plan was published in August 2002, updated in 2008 and reviewed in 2017, as required. Over the past few years it has completed several projects removing trees and restoring approximately 35 acres of grasslands on its property in the grassland management area section of the Cantonment Area, the area which the MAANG indicated it would initiate efforts to restore. Figure 3-2 identifies the general grassland management area of Otis ANGB in the Cantonment Area.

Questions concerning grasslands on Otis ANGB should be addressed to the point of contact for the 102nd Intelligence Wing listed in Appendix B.

SECTION 4 REMEDIATION PROGRAM ACTIVITIES

4.0 INTRODUCTION

This section of the Annual Report provides summaries on remediation activities in the Reserve during TY 2018.

4.1 INVESTIGATION AND REMEDIATION PROGRAMS

There are two independent cleanup programs operating at JBCC: the IRP and the IAGWSP.

The IRP was initially established at the installation in 1982 under Air National Guard management. Oversight of the program was transitioned to the Air Force Center for Environmental Excellence, now known as the Air Force Civil Engineer Center (AFCEC), in 1996. The program operates under the regulatory guidance of the federal Comprehensive Environmental Response, Compensation and Liability Act (CERCLA). The majority of the activity of the IRP has been focused in the Cantonment Area and in offinstallation plumes emanating from the Cantonment Area. AFCEC is responsible for two IRP sites in the Reserve and three Military Munitions Response Program (MMRP) sites in the Reserve (see section 4.2). The MMRP addresses potential threats to human health and the environment from munitions and munitions constituents in non-operational range areas.

The IAGWSP is being managed by the Army National Guard. Investigation of the environmental impacts of training in the upper 15,000 acres of JBCC began in 1996 and cleanup of groundwater contamination began in 2004. Seventeen treatment systems are currently operating on seven groundwater plumes to clean more than 4.1 million gallons of groundwater per day. More than 12 billion gallons of groundwater have been treated to date. While no public or private drinking water supplies are affected by the groundwater contamination being addressed by the IAGWSP, the contamination is being addressed to prevent any possible future exposures. Information on the IAGWSP can be obtained on its website: http://jbcc-iagwsp.org.

Both the IRP and IAGWSP have active regulatory participation and community involvement programs. The communities surrounding the installation are kept informed through neighborhood notices and meetings, media releases, community updates, fact sheets, publication and distribution of plans and reports, websites, and information repositories at local libraries.

The programs also meet regularly with EPA Region 1 and MassDEP to discuss findings and determine appropriate response actions. Public comment periods are held, as necessary, to present and solicit input on proposed actions. The programs also provide updates on their activities to public meetings of the joint citizens' advisory team, the JBCC Cleanup Team. The JBCC Cleanup Team includes representatives from the surrounding communities and the regulatory agencies.

The IRP and IAGWSP each operate under different regulatory directives and mostly address different contaminants of concern. Figure 4-1 shows the areas of contamination being addressed by the IRP and the IAGWSP in the Reserve.
Figure 4-1 JBCC Groundwater Plume Map

Representatives from the IRP and IAGWSP meet as needed to exchange ideas and information that can make their cleanup efforts more effective and efficient. They share sampling results, equipment, technical innovations, and even a treatment facility.

4.2 INSTALLATION RESTORATION PROGRAM ACTIVITIES IN THE RESERVE

In TY 2018, AFCEC finalized the Comprehensive Site Evaluation (CSE) Phase II (similar to a Site Inspection) investigation at 10 MMRP sites, including the three sites that are located in the Reserve. A streamlined Remedial Investigation/Feasibility Study (RI/FS) was recommended for Mock Village. A RI/FS was initiated at the Old K Range and the Otis Gun Club. Numerous 2.36-inch rockets and other ordnance were discovered at the Old K Range during the CSE Phase II field work and the subsequent Remedial Investigation (RI) work.

In addition to the MMRP sites, AFCEC manages two groundwater plumes in the Reserve (CS-19 and FS-12). AFCEC closed a former site referred to as CS-18, which was also located in the Reserve.

In TY 2018, groundwater monitoring was conducted at CS-19 where the contaminant of concern is RDX. RDX was detected above the EPA risk-based level of $0.7 \mu g/L$ in two of six monitoring wells sampled. The highest RDX concentration (2.1 $\mu g/L$) was detected at a well located just downgradient of the source area.

AFCEC also manages three 1.5 megawatt (MW) wind turbines at JBCC, two of which are located in the Reserve. Each turbine produces, on average, a credit of \$500,000 per year which offsets the energy use in the IRP by 100%. The turbine operation is curtailed for the NLEB from July 15 to October 15, 30 minutes before sunset to 30 minutes after sunrise for wind spends less than 4.5 meters per second. There were no reported bat or bird strikes during TY 2018.

4.3 IMPACT AREA GROUNDWATER STUDY PROGRAM ACTIVITIES

During TY 2018, the IAGWSP operated groundwater treatment systems for plumes associated with the Demolition Area 1, J-3 Range, J-2 Range (northern and eastern), the J-1 Range (southern and northern), and the Central Impact Area (CIA). These systems are treating approximately 4.1 million gallons of water per day.

Removal of munitions from the source of the CIA plume continued in TY 2018. Work on Phase III Area I (10 acres) of the CIA long-term source area response is underway. Teams from the Army Corps of Engineers used Metal Mapper, a multi-sensor electromagnetic detection technology, for the removal efforts. This geophysical technology is designed to discriminate between munitions and scrap metal in the subsurface. Use of the Metal Mapper allows the program to increase the efficiency of unexploded ordnance removal while reducing impacts to the surface soil and vegetation when compared to traditional excavation techniques.

Several new monitoring wells were added in TY 2018 (Figure 4-2) to aid in long-term monitoring of plumes with remedies in place and to provide data to finalize ongoing investigations. The monitoring wells were installed in support of groundwater investigations at the J-2 (northern and eastern), Demolition Area 1, J-3 and Central Impact Area plumes.

The IAGWSP processed Records of Action (ROAs) for monitoring wells, soil sampling, geophysical survey and munitions removal in TY 2018. Several of the new ROAs involved activities in areas of moderate sensitivity for cultural resources and required consultation with federally recognized tribes (Aquinnah and Mashpee Wampanoag). Required consultations with federally recognized tribes and the SHPO are completed in advance of any MAARNG and IAGWSP program undertakings for any actions in areas designated as High or Moderate Sensitivity.

Additional information on the IAGWSP's investigation and cleanup activities is available on its website: http://jbcc-iagwsp.org.

Figure 4-2 IAGWSP Wells Installed During TY 2018

SECTION 5 MISCELLANEOUS MILITARY AND CIVILIAN ACTIVITIES AND ENVIRONMENTAL PROGRAM PRIORITIES

5.0 MISCELLANEOUS MILITARY ACTIVITIES

5.1 PROJECTS AT CAMP EDWARDS

5.1.1 Trespassing and Critical Infrastructure Protection

In coordination with the MANG and the EMC, the DFW's Southeast District will be posting signage through mitigation money received from Eversource (then NStar) in 2012 for a wetlands-related EPS violation for the transmission lines running through the Reserve. The base border will be signed with language agreed upon by the military and the state. Large signs will be installed near the main entries (such as the former Otis Fish and Game Club) identifying the area as Camp Edwards/the Upper Cape Water Supply Reserve. Contracting and implementation should occur during Fiscal Year 2019.

5.2 JOINT BASE CAPE COD EXECUTIVE DIRECTOR

The Adjutant General of the Massachusetts National Guard established the position of the Executive Director of JBCC in late TY 2012. The primary roles of the position are to ensure inter-agency communication and coordination are implemented and practiced and that government and community stakeholders are kept informed. Additionally, the Executive Director is responsible for looking at efficiencies that might be gained through consolidation and cost-sharing of base operating support operations and activities.

The Executive Director serves as the Adjutant General's representative to the Joint Oversight Group that considers items of mutual concern. The Executive Director also serves on the Commonwealth of Massachusetts's Military Asset and Security Strategy Task Force helping to secure the military bases of the Commonwealth. Brigadier General Christopher Faux was appointed JBCC Executive Director in June 2018.

5.3 MISCELLANEOUS CIVILIAN ACTIVITIES

5.3.1 Eversource Switching Station

As part of the Mid Cape Reliability Project, Eversource plans to upgrade an existing Eversource switching station (Bourne Switching Station #917) located on an easement in the Reserve (Figure 5-2). Eversource evaluated several sites for minimal loss of training land and impact to state priority habitat. Eversource will site the switching station southwest of the current substation (Figure 5-1). The property transfers between Eversource and the state leaves a net benefit of approximately 2.51 acres for the MAARNG for training. Because the Reserve is land protected under Article 97 Articles of Amendment to the Constitution of the Commonwealth of Massachusetts, legislation was required to be passed to change the use of the property. Governor Charlie Baker signed the bill to change its use in August 2018. Eversource is currently working through the permitting process with NHESP and the property transfer with the MAARNG and DCAM. Eversource submitted an Environmental Notification Form to the MEPA office on December 17, 2018. Over the last six years, the EMC and the MANG at Camp Edwards have been involved stakeholders in Eversource's proposal to replace the switching station.

Other partner agencies include MEPA, NHESP and DFW, the Cape Cod Commission, and the four Upper Cape Cod towns surrounding JBCC.

Figure 5-1 Eversource Switching Station Area

5.3.2 Cape Cod Canal Transportation Study

In November 2014, the Massachusetts Department of Transportation (MassDOT) announced that it is conducting the Cape Cod Canal Transportation Study to identify existing and future transportation deficiencies and needs around the Cape Cod Canal area in Bourne and Sandwich. Due to the age of the Bourne and Sagamore bridges crossing the canal and the increasing need to maintain them, the study was devised to entail the development and analysis of a full range of transportation alternatives including highway, interchange, and non-highway improvements, as well as options and design elements that improve access for all transportation modes.

The transportation study concluded changes be made to the approaches to the bridges, construction of new bridges alongside the old or other changes to existing roadways that could have potential impacts to JBCC and specifically the Camp Edwards Training Site. The Army Corps of Engineers is conducting its own study of the Bourne and Sagamore Bridges: the Major Rehabilitation Evaluation Report, which will ultimately identify a

recommended plan for the bridges. The Army Corps of Engineers held five public and stakeholder involvement meetings in December 2018 to include one in Bourne. A presentation of possible future solutions for the Bourne and Sagamore bridges were made during the meeting; the alternatives still include major rehabilitation of the bridges or replacing the aging bridges with structures built to current standards. Future public involvement includes an additional round of stakeholder meetings and a comment period for the environmental analysis planned for Summer 2019.

MassDOT established a "Working Group" comprised of town and regional officials and interested organizations to obtain input on the study. The Working Group includes representation from the JBCC commands and the EMC. The Working Group met twice during TY 2018.

5.4 ENVIRONMENTAL PROGRAM PRIORITIES

5.4.1 TY 2018 Environmental Program Priorities

The following subsections provide a list of the environmental program priorities established for TY 2018 as published in the TY 2017 Annual Report for its activities associated with the Reserve and the status of achieving them.

Natural Resources Management

- Engage appropriate stakeholders to conduct an INRMP review of operation and effect and update as needed. (On-going)
- Address potential federal status changes to species at Camp Edwards through interagency consultation and planning. (On-going)
- Further develop supplemental plans for Natural Resources/ITAM long-term budgets and implementation, including invasive species, wildland fire, and land rehabilitation. (On-going)
- Continue implementation and refinement of management focused monitoring of rare species, habitat management, and training capabilities. (On-going)
- Continue offering regional wildland fire training to support regional programs and partner agencies and organizations. (On-going)
- Continue upscaling of habitat and land management actions, including mechanical work and prescribed burning, through internal actions and partnerships. (On-going)
- Continue and further develop interagency partnerships with Massachusetts Division of Fisheries and Wildlife, NHESP, US Fish and Wildlife Service, DCR, MassDEP, and others through active engagement to seek mutual benefit. (On-going)

Cultural Resources Management

- Conduct applicable reviews of all IAGWSP, IRP and MAARNG proposed activities in the Reserve for potential cultural resources impacts. (Accomplished)
- Document any new occurrences of identified cultural resources. (None identified)

Other E&RC Environmental Management Programs

• Coordinate required soil, lysimeter and groundwater sampling at active firing ranges in accordance with approved range management plans. (Accomplished)

- Provide appropriate support to Camp Edwards for the development of Echo Range, a required combat pistol qualification course. (Accomplished)
- Continue to support Camp Edwards through the environmental process for proposed training venues in the Reserve. (Accomplished)
- Provide support as needed to the JBCC Executive Director Office with regards to community involvement and environmental and training issues. (Accomplished)
- Attend all scheduled EMC, CAC and SAC meetings, both internally and externally, that may involve activities within and surrounding the Reserve. (Accomplished)
- Provide information on environmental program activities regarding the Reserve. (Accomplished)
- Publish the final TY 2017 *State of the Reservation Report*. (Accomplished)

5.4.2 TY 2019 Environmental Program Priorities

The following subsections provide a list of environmental program priorities for Camp Edwards for activities associated with the Reserve in TY 2019.

Natural Resources and ITAM Management

- Engage appropriate stakeholders to conduct an INRMP review of operation and effect and update as needed.
- Address potential federal status changes to species at Camp Edwards through interagency consultation and planning.
- Further develop supplemental plans for Natural Resources/ITAM long-term budgets and implementation, including invasive species, wildland fire, and land rehabilitation.
- Continue implementation and refinement of management focused monitoring of rare species, habitat management, and training capabilities.
- Continue offering regional wildland fire training to support regional programs and partner agencies and organizations.
- Continue upscaling of habitat and land management actions, including mechanical work and prescribed burning, through internal actions and partnerships.
- Continue and further develop interagency partnerships with Massachusetts Division of Fisheries and Wildlife, NHESP, US Fish and Wildlife Service, EMC, DCR, MassDEP, and others through active engagement to seek mutual benefit.

Other E&RC Environmental Management Programs

- Coordinate required soil, lysimeter and groundwater sampling at active firing ranges in accordance with approved range management plans.
- Provide appropriate support to Camp Edwards for small arms range development.
- Continue to support Camp Edwards through the environmental process for proposed training venues in the Reserve.
- Provide support as needed to the JBCC Executive Director Office with regards to community involvement and environmental and training issues.
- Attend all scheduled EMC, CAC and SAC meetings, both internally and externally, that may involve activities within and surrounding the Reserve.

- Provide information on environmental program activities regarding the Reserve.
- Work closely with Camp Edwards, the Natural Resources Office and the EMC to ensure training is compatible with the EPSs.
- Provide support for the EMC and its advisory councils as required in Chapter 47 of the Acts of 2002.
- Publish the final TY 2018 *State of the Reservation Report.*

APPENDIX A ENVIRONMENTAL PERFORMANCE STANDARDS

ENVIRONMENTAL PERFORMANCE STANDARDS APRIL 6, 2017

For Massachusetts National Guard Properties at the Massachusetts Military Reservation

CAMP EDWARDS TRAINING AREA GENERAL PERFORMANCE STANDARDS

None of the following banned military training activities shall be allowed in the Camp Edwards Training Areas:

-Artillery live fire -Mortar live fire -Demolition live fire training

-Artillery bag burning

-Non-approved digging, deforestation or vegetation clearing

-Use of 'CS', riot control, or tear gas for training outside the NBC bunkers

-Use of field latrines with open bottoms

-Vehicle refueling outside designated Combat Service Area and Fuel Pad locations

-Field maintenance of vehicles above operator level

Limitations on the use of small arms ammunition and live weapon fire fall into the following two categories:

- Live weapon fire is prohibited outside of established small arms ranges. Live weapon fire is not allowed on established small arms ranges except in accordance with Environmental Performance Standard 19, other applicable Performance Standards, and a range-specific plan approved through the Environmental Management Commission (EMC).

- Blank ammunition for small arms and simulated munitions may be used in areas outside of the small arms ranges, using only blank ammunition and simulated munitions identified on an approved list of munitions. Joint review and approval for inclusion on the list shall be through by the Environmental & Readiness Center (E&RC) and the EMC.

Each user will be responsible for proper collection, management, and disposal of the wastes they generate, as well for reporting on those actions.

Use and application of hazardous materials or disposal of hazardous waste shall be prohibited except as described in the Groundwater Protection Policy.

Vehicles are only authorized to use the existing network of improved and unimproved roads, road shoulders, ranges and bivouac areas, except where necessary for land rehabilitation and management, water supply development, and remediation, or where roads are closed for land rehabilitation and management.

Protection and management of the groundwater resources in the Camp Edwards Training Area will focus on the following:

- Development of public and Massachusetts Military Reservation water supplies.
- Preservation and improvement of water quality and quantity (recharge).
- Activities compatible with the need to preserve and develop the groundwater resources.

All users of the Camp Edwards Training Area must comply with the provisions of the Groundwater Protection Policy and any future amendments or revisions to the restrictions and requirements. These will apply to all uses and activities within the overlays relative to Wellhead Protection, Zone II's within the Cantonment Area, and the Camp Edwards Training Areas.

Development of water supplies will be permitted within the Camp Edwards Training Area after review and approval by the managing agencies, principally the Department of the Army and its divisions, together with the Massachusetts Department of Environmental Protection, and the Massachusetts Division of Fish and Wildlife.

All phases of remediation activities will be permitted within the Camp Edwards Training Area after review and approval by the managing agencies, principally the Department of the Army and its divisions, together with the federal and state agencies who will have jurisdiction for remediation.

Pollution prevention and management of the Camp Edwards training ranges will focus on and include the following:

The Camp Edwards Training Area, including the Small Arms Ranges (SAR) and their associated "Surface Danger Zones," and any areas where small arms or other munitions or simulated munitions are used, shall be managed as part of a unique water supply area under an adaptive management program that integrates pollution prevention, and best management practices (BMP), including the recovery of projectiles. This will be done through individual range-specific plans that are written by the Massachusetts National Guard and approved for implementation through the EMC and any other regulatory agency having statutory and/or regulatory oversight. Adaptive, in this context, means making decisions as part of a continual process of monitoring, reviewing collected data, evaluating advances in range monitoring, design and technology, and responding with management actions as dictated by the resulting information and needs of protecting the environment while providing compatible military training within the Upper Cape Water Supply Reserve.

A range plan shall be designed and followed to reduce the potential for an unintended release to the environment outside of the established containment system(s) identified in the range-specific plans. All users must be aware of, and comply with, the Environmental Performance Standards that are applicable to all SAR activities. Any range specific requirements will be coordinated through the E&RC with the EMC, incorporating those specific requirements into the appropriate range-specific plans and range information packets. Camp Edwards SAR Pollution Prevention Plan shall be followed to prevent or minimize releases of metals or other compounds related to the normal and approved operation of each SAR. The adaptive SAR management program components required in each range-specific plan shall include:

- Consultation with applicable agencies with oversight of the training area before undertaking any actions that are subject to state and/or federal regulatory requirements.
- Specific recovery plans for the removal and proper disposition of spent projectiles, residues and solid waste associated with the weapons, ammunition, target systems, and/or their operation and maintenance.
- Reduction of adverse impacts to the maximum extent feasible, including consideration for the design/redesign and/or relocation of the activity or encouraging only those activities that result in meeting the goal of overall projectile and/or projectile constituent containment.
- Internal and external coordination of documentation for the Camp Edwards range management programs and other related Camp Edwards management programs including: the Integrated
- Training Area Management Program, Range Regulations, Camp Edwards Environmental Management System, Civilian Use Manual, and Standard Operating Procedures.
- Long-term range maintenance, monitoring and reporting of applicable parameters and analysis.

The Massachusetts National Guard shall ensure that all training areas where munitions or simulated munitions are used or come to be located, including range areas, range surface danger zones, and any other areas within the Upper Cape Water Supply Reserve that are operational ranges are maintained and monitored following approved management plans that include planning for pollution prevention, sustainable range use and where applicable, restoration.

Protection and management of the vegetation of the Camp Edwards Training Area for focus on the following:

- Preservation of the habitat for federal- and state-listed rare species and other wildlife.
- Preservation of the wetland resource areas.
- Activities compatible with the need to manage and preserve the vegetative resources.
- Realistic field training needs.
- Identification and restoration of areas impacted by training activities.

Goals for the Adaptive Ecosystem Management approach to management of the Camp Edwards properties will be as follows:

- Management of the groundwater for drinking water resources
- Conservation of endangered species.
- Management of endangered species habitat for continuation of the species.
- Ensuring compatible military training activities.
- Allowing for compatible civilian use.
- Identification and restoration of areas impacted by training activities.

The Environmental Performance Standards will be incorporated into the programs and regulations of the Massachusetts National Guard as follows. Those standards relating to natural resources management shall be incorporated as standards into each of the state and federal environmental management programs and attached as an appendix or written into the documentation accompanying the plan or program. All the Environmental Performance Standards will be attached to the Integrated Training Area Management Plan 'Trainer's Guide' and to the Camp Edwards Range Regulations. Modification of the Standards Operating Procedures will include review and conformance with the Environmental Performance Standards for trainers and soldiers at Camp Edwards.

SPECIFIC RESOURCE PERFORMANCE STANDARDS IN THE CAMP EDWARDS TRAINING AREA

1. Groundwater Resources Performance Standards

1.1. All actions, at any location within the Camp Edwards Training Areas, must preserve and maintain groundwater quality and quantity, and protect the recharge areas 1:0 existing and potential water supply wells. All areas within Camp Edwards Training Areas will be managed as State Zone U, and, where designated, Zone I, water supply areas.

1.2 The following standards shall apply to designated Wellhead Protection Areas:

- The 400-foot radius around approved public water supply wells will be protected from all access with signage. That protection will be maintained by the owner and/or operator of the weJl, or the leaseholder of the property.
- No new stormwater discharges may be directed into Zone I areas.

- No in ground septic system will be permitted within a Zone I area.
- No solid wastes may be generated or held within Zone I areas except as incidental to the construction, operation, and management of a well.
- Travel in Zone I areas will be limited to foot travel or to vehicles required for construction, operation, and maintenance of wells.
- No new or existing bivouac activity or area shall be located within a Zone I area.
- All other areas will be considered as Zone II designated areas and will be subject to the standards of the Groundwater Protection Policy.

1.3 Land-use activities that do not comply with either the state Wellhead Protection regulations (310 CMR 22.00 et seq.) or the Groundwater protection Policy are prohibited.

1.4 All activities will suppol and not interfere with either the Impact Area Groundwater Study and/or the Installation Restoration Program. All activities shall conform to the requirements of Comprehensive Environmental Response, Compensation and Liability Act, the Massachusetts Contingency Plan, and the Safe Drinking Water Act.

1.5 Extraction, use, and transfer of the groundwater resources must not de- grade [e.g. draw down surface waters] in freshwater ponds, vernal pools, wetlands, and marine waters, unless properly reviewed, mitigated, and approved by the managing and regulating agencies.

1.6 Land uses and activities in the Camp Edwards Training Areas will meet the following standards:

- Will conform to all existing and applicable federal, state and local regulations.
- Must be able to be implemented without interference with ongoing remediation projects.
- Allow regional access to the water supplies on the Massachusetts Military Reservation.

1.7 The following programs and standards will be used as the basis for protecting groundwater resources in the Camp Edwards Training Areas:

- Groundwater Protection Policy.
- Federal and Department of Defense environmental programs: Integrated Natural Resources Management Plan, Integrated Training Area Management Program, Range Regulations, Spill Prevention Control and Countermeasures Plan (or equivalent), Installation Restoration *Plan*, Impact Area Groundwater Study, or other remediation programs.
- State and federal laws and regulations pertaining to water supply.

2. Wetlands and Surface Water Performance Standards

2.1 Since there are relatively few wetland resources found at the Massachusetts Military Reservation, and since they are important to the support of habitat and water quality on the properties, the minimum standard will be no net loss of any of the wetland resources or their 100-foot buffers.

2.2 Land uses and activities will be managed to prevent and mitigate new adverse impacts and eliminate or reduce existing conditions adverse to wetlands and surface water resource areas. Impacts from remediation activities may be acceptable with implementation of reasonable alternatives.

2.3 Wetland area management priorities:

- Protection of existing; wetland resource areas for their contributions to existing and potential drinking water supplies.
- Protection of wetlands for rare species and their habitats.
- Protection of human health and safety.

2.4. Activities will be managed to preserve and protect wetlands and vernal pools as defined by applicable, federal, state, and local regulations. These activities will include replacement or replication of all wetland resource buffer areas, which are lost after completion of an activity or use.

2.5 All land altering activities within 100 feet of a certified vernal pool must be reviewed before commencement by the Massachusetts Department of Environmental Protection/Wetlands Unit and the Natural Heritage and Endangered Species Program within the Division of Fish and Wildlife for impacts to wildlife and habitat. The certification of vernal pools will be supported by the on site personnel and will proceed with the assistance of the appropriate state agencies.

2.6 All new uses or activities will be prohibited within the wetlands and their IOO-foot buffers, except those associated with an approved habitat enhancement or restoration program; those on existing improved and unimproved roads where appropriate sediment and erosion controls are put in place prior to the activity; or those where no practicable alternative to the proposed action is available. No new roads should be located within the 100-foot buffers. Existing roads within such buffers should be relocated provided that:

- The relocation does not cause greater environmental impact to other resources.
- There are funds and resources allocated for resource management and that those resources are approved and available for the relocation.

2.7 During the period of 15 February to 15 May, listed roads/trails within 500 feet of wetlands will be closed to vehicle access to protect the migration and breeding of amphibians. Emergency response and environmental management activities will not be restricted.

- Donnelly and Little Halfway Ponds maneuver trails (excluding the permanently closed section along the eastern edge of Donnelly Pond) from Frank Perkins Road north to Wood Road
- Red Maple Swamp trail from Wood Road north and east to Avery Road
- Orchard and Jefferson Roads (continuous) from Cat Road south and east to Burgoyne Road
- Maneuver trail(s) in powerline easement north of Gibbs Road from Goat Pasture Road west to the boundary of training areas C-13 and C-14
- Grassy Pond trail (side access to Sierra Range) from Gibbs Road south to Sierra Range
- Sandwich Road from the powerline easement north to the gas pipeline right of way
- Bypass Bog/Mike Range Road from entrance to Mike Range south and west to Greenway Road

2.8 No new bivouac area shall be located within 500 feet of any wetland. Any existing bivouac within a wetland buffer shall be relocated provided there are funds and resources allocated for the relocation.

3. Rare Species Performance Standards

3.1 As the Natural Heritage and Endangered Species Program of the Massachusetts Division of Fisheries & Wildlife has identified the entire Massachusetts Military Reservation as State Priority Habitat for state-listed species (version dated 2000-2001), all activities and uses must comply with the Massachusetts Endangered Species Act and its regulations.

3.2 Where activities and uses are not specifically regulated under the Camp Edwards Training Area Range and Environmental Regulations, including these Environmental Performance Standards, the MMR Environmental and Readiness Center must review the activities for conformance with the Integrated Natural Resource Management Plan, and shall- consult with the Natural Heritage and Endangered Species Program regarding potential impacts to state-listed species.

3.3 All activities impacting rare species habitat must be designed to preserve or enhance that habitat as determined by the MMR Environmental and Readiness Center in consultation with the Natural Heritage and Endangered Species Program.

3.4 Users are prohibited from interfering with state and federal listed species.

3.5 Users will report all sightings of recognized listed species, e.g. box turtles, within any area of the Massachusetts Military Reservation.

4. Soil Conservation Performance Standards

4.1 Activities and uses must be compatible with the limitations of the underlying soils. Limitations on uses and activities may be made where the soils or soil conditions would not support the activity.

4.2 Agricultural soil types will be preserved for future use.

4.3 Any perennial or intermittent stream identified by the Environmental & Readiness Center Office will be protected from siltation by retaining undisturbed vegetative buffers to the extent feasible.

4.4 Cultural resource evaluations must be completed before any earth-moving operation may take place in undisturbed areas with high potential for cultural resources, and earth moving may be limited to specific areas (See Cultural Resource Performance Standards).

4.5 An erosion control analysis will be made part of the land management programs (Integrated Natural Resource Management Plan, the Integrated Training Area Management Program, Range Regulations, Civilian Use, and Standard Operating Procedures) for the Camp Edwards Training Area, including appropriate mitigation measures where existing or potential erosion problems are identified.

4.6 For all improved and unimproved roads, ditches and drainage ways:

- All unimproved roads, ditches, roads and drainage ways identified for maintenance will be cleaned of logs, slash and debris.
- Unimproved roads and roads may not otherwise be improved unless approved for modification.
- Any trail, ditch, road, or drainage way damaged by activities will be repaired in accordance with the hazard and impact it creates.

4.7 Erosion-prone sites will be inspected periodically to identify damage and mitigation measures.

5. Vegetation Management Performance Standards

5.1 All planning and management activities impacting vegetation

- Will ensure the maintenance of native plant communities, and
- Shall be performed to maintain the biological diversity.

5.2 Revegetation of disturbed sites will be achieved by natural and artificial recolonization by native species.

5.3 Timber harvesting or clear-cutting of forested areas should not occur on steep slopes with unstable soils or with in the buffers to wetland resources.

5.4 Vegetation management will be subject to a forest management and fire protection program prepared by the users in accordance with federal standards, and carried out in a manner acceptable to the Massachusetts Military Reservation Committee and other state agencies or commissions, as may be designated by the Commonwealth of Massachusetts.

6. Habitat Management Performance Standards

6.1 The Camp Edwards Training Area will be managed as a unique rare species and wildlife habitat area under n adaptive ecosystem management program that integrates ecological, socio-economic, and institutional perspectives, and which operates under the following definitions:

- Adaptive means making decisions as part of a continual process of monitoring, reviewing collected data, and responding with management actions as dictated by the resulting information and needs of the system.
- Ecosystem means a system-wide understanding of the arrangements of living and non-living things, and the forces that act upon and within the system.
- Management entails a multi-disciplinary approach where potentially competing interests are resolved with expert analysis, user and local interest considerations, and a commitment to compromise interests when the broader goal is achieved to manage the Camp Edwards Training Area as a unique wildlife habitat area.

6.2 The adaptive ecosystem management program will include:

- Coordinated documentation for the management programs, Integrated Natural Resource Management Plan, the Integrated Training Area Management Program, Range Regulations, Civilian Use, and Standard Operating Procedures.
- The Massachusetts National Guard Environmental and Readiness Center staff and necessary funding to support its ecosystem management plans, as related to the amount of training occurring.
- Cooperative agreements to create a management team of scientific and regulatory experts.
- Long-term land maintenance, monitoring of resources and trends, study and analysis.
- Recovery plans for species and habitats identified for improvement.
- Consultation with Federal and State agencies charged with oversight of the Endangered Species Program before any actions that may affect state and federal-listed species habitat.
- Reduction of adverse impacts to the maximum extent possible, including consideration for the relocation of the activity or encouraging only those activities that result in meeting a habitat management goal.
- Habitat management activities designed to promote protection and restoration of native habitat types.

7. Wildlife Management Performance Standards

7.1 Native wildlife habitats and ecosystems management will focus on the following:

- Protecting rare and endangered species, and,
- Maintaining biodiversity.

7.2 Hunting, recreation and educational trips must be approved, scheduled, planned, and supervised through Range Control.

7.3 Any activity or use will prioritize protection of life, property, and natural resource values at the boundaries of the Camp Edwards Training Area where wildlife interfaces with the surrounding built environment.

7.4 Wildlife management will include the following actions, specific to the species targeted for management:

- Development and implementation of a plan to monitor hunting of game species.
- Planning for multi-use objectives for recreation and hunting that incorporate public input and recommendations.
- Development of suitable monitoring programs for federal and state-listed species, and regular exchange of information with the Natural Heritage and Endangered Species Program.

8. Air Quality Performance Standard

8.1 All uses and activities will be responsible for compliance with both the State Implementation Plan for Air Quality and the Federal Clean Air Act.

8.2 Air quality management activities will include air sampling if required by regulation of the activity.

9. Noise Management Performance Standards

9.1 Noise management activities shall conform to the Army's Environmental Noise Management Program policies for evaluation, assessment, monitoring, and response procedures.

10. Pest Management Performance Standards

10.1 Each user will develop and implement an Integrated Pest Management Program to control pest infestations that may include outside contracting of services. Non-native biological controls should not be considered unless approved by federal and state agencies.

10.2 Each user will be held responsible for management of pests that threaten rare and endangered species, or are exotic and invasive species, Invasive plant species that may be considered pest species are those defined by the United States Fish and Wildlife Service and the Massachusetts Natural Heritage and Endangered Species Program of the Division of Fisheries and Wildlife office. Site-specific analysis will be performed before implementation of any proposed pest management plans.

10.3 Pest vegetation control must be balanced against environmental impact and any proposed pest management activities, including the use of herbicides and mechanical methods, within rare species habitat areas must be approved by the Natural Heritage and Endangered Species Program, or in the case of federally listed species, by the United States Fish and Wildlife Service.

10.4 Only herbicide formulations approved by the United States Environmental Protection Agency, the Department of Agriculture, the agency managing the user, and the Commonwealth of Massachusetts may be applied.

10.5 Herbicides and pesticides will not be applied by aerial spraying unless required by emergency conditions and approved under applicable state and federal regulations.

11. Fire Management Performance Standards

11.1 All activities and uses shall manage, prevent, detect, and suppress fires on the Camp Edwards Training Area in coordination with the local and state fire services and natural resource managers in the Environmental & Readiness Center.

11.2 Prescribed bums will be used as a habitat management and fire prevention tool. Prescribed burns will be used to reduce natural fire potential and create or maintain diverse and rare species habitat.

11.3 Pre-suppression activities will include strategic firebreaks and other management of vegetation in high risk and high-incidence areas. The Integrated Natural Resource Management Plan and Fire Management Plan will be consulted for proposed actions.

11.4 Other than the above, no open fires are allowed.

12. Stormwater Management Performance Standards

12.1 All stormwater facilities shall comply with the State Department of Environmental Protection Guidelines for Stormwater Management, including Best Management Practices and all other applicable standards for control and mitigation of increased storm water flow rates and improvement of water quality.

12.2 All increases in stormwater runoff will be controlled within the user's property.

12.3 No new stormwater discharges will be made directly into wetlands or wetland resource areas.

13. Wastewater Performance Standards

13.1 All wastewater and sewage disposal will be in conformance with the applicable Federal and Massachusetts Department of Environmental Protection agency regulations.

14. Solid Waste Performance Standards

14.1 All solid waste streams (i.e., wastes not meeting the criteria for hazardous wastes) will be monitored and managed to substitute, reduce, recycle, modify processes, implement best management practices, and/or reuse waste, thereby reducing the total tonnage of wastes,

14.2 All users will be held responsible for collection, removal and disposal outside of the Camp Edwards Training Areas of solid wastes generated by their activities.

14.3 All users must handle solid wastes using best management practices to minimize nuisance odors, windblown litter, and attraction of vectors.

14.4 No permanent disposal of solid waste within the Groundwater protection Policy area/Camp Edwards field training areas will be permitted.

15. Hazardous Materials Performance Standards

15.1 Where they are permitted, use and application of hazardous materials shall be otherwise minimized in accordance with pollution prevention and waste minimization practices, including material substitution.

15 .2 No permanent disposal of hazardous wastes within the Groundwater protection Policy area/Camp Edwards field training areas will be permitted.

15.3 Fuel Management

15.3.1 Spill Prevention, Control, and Countermeasure Plan, is in place to reduce potential for a release. Camp Edwards Spill Response Plan is in place to respond to a release if an event should occur. All users will comply with these plans at the Camp Edwards Training Area.

15.3.2 If found, non-complying underground fuel storage tanks will be removed in accordance with state and federal laws and regulations to include remediation of contaminated soil.

15 .3.3 No storage or movement of fuels for supporting field activities, other than in vehicle fuel tanks, will be permitted except in approved containers no greater than five gallons in capacity.

15.3.4 New storage tanks are prohibited unless they meet the following requirements:

- Are approved for maintenance heating, or, permanent emergency generators and limited to propane or natural gas fuels.
- Conform to the Groundwater Protection Policy and applicable codes.

15.4 Non-fuel Hazardous Material Storage

15.4 .1 No storage above those quantities necessary to support field training activities will be allowed within the Camp Edwards Training Area except where necessary to meet regulatory requirements, and where provided with secondary containment.

15.4.2 When required by applicable regulation, the user shall implement a Spill Prevention, Control and Containment/Emergency Response or other applicable response plan.

16. Hazardous Waste Performance Standards

16.1 All uses shall comply with applicable local, state, and federal regulations governing hazardous waste generation, management, and disposal (including overlays relative to Wellhead Protection, Zone II's within the Cantonment Area).

16.2 Accumulations of hazardous waste shall be handled in accordance with regulations governing accumulation and storage.

16.3 Existing facilities must implement pollution prevention and waste minimization procedures (process modifications, material substitution, recycling, and best management practices) to minimize waste generation and hazardous materials use.

16.4 Occupants and users will be held responsible for removing all solid or hazardous wastes generated during the period of use/tenancy/visitation upon their departure or in accordance with other applicable or relevant regulations.

16.5 Remedial activities undertaken under the Installation Restoration Program, the Impact Area Groundwater Study Program, the Massachusetts Contingency Plan, or other governing remediation programs are exempt from additional regulation (e.g., waste generation volume limits). Removal, storage, and disposal of contaminated material are required to comply with all state, and federal regulations.

16.6 Post-remedial uses and activities at previously impacted sites will be allowed in accordance with terms and conditions of the applicable regulations.

16.7 All hazardous wastes will be transported in accordance with federal Department of Transportation regulations governing shipment of these materials.

16.8 Transport shall reduce the number of trips for transfer and pick-up of hazardous wastes for disposal to extent feasible. Tills may include planning appropriate routes that minimize proximity to sensitive natural resource areas, and reducing internal transfers of material, including transfers from bulk storage tanks to drums, tankers, carboys, or other portable containers or quantities.

16.9 No permanent disposal of hazardous wastes within the Groundwater Protection Policy area/Camp Edwards field training areas will be permitted.

<u>17. Vehicle Performance Standards</u>

17.1 Vehicles within the Camp Edwards Training Area will be limited to the existing improved and unimproved road system except where required for natural resource management or property maintenance or where off-road activity areas are located and approved by the Environmental and Readiness Center in consultation with the Massachusetts Division of Fisheries and Wildlife.

17.2 Unimproved, established access ways will be limited to use by vehicles in accordance with soil conditions as described in the Soil Conservation Performance Standards.

17.3 The number of military and civilian vehicles within the Camp Edwards Training Area will be controlled using appropriate scheduling and signage.

18. General Use and Access Performance Standards

18.1 General User Requirements. Requirements that will apply to all users, both public and private, in the Camp Edwards Training Area include the following:

- All acts that pollute the groundwater supply are prohibited.
- No litter or refuse of any sort may be thrown or left in or on any property.
- All users will be held responsible for providing, maintaining, and re- moving closed-system, sanitary facilities necessary for their use and activity.
- No person shall wade or swim in any water body except for activities approved by the Massachusetts National Guard including remediation, scientific study, or research.
- Vehicles may only be driven on roads authorized and designated for such use and parked in designated areas, and may not cross any designated wetland.
- Public users may not impede the military training activities.

18.2. Civilian Use Manual. To guide public conduct on the Massachusetts Military Reservation, a Civilian Use Manual will be prepared and periodically updated. All civilian users will obtain and follow this Manual.

18.3. Siting and Design Performance Standards

18.3.1 New or expanded buildings should not be proposed within the Camp Edwards Training Areas, with the following exceptions:

- Buildings to support allowed training, operations and activities, including upgrading of those facilities currently in place,
- Buildings used for the purposes of remediation activities,
- Buildings used for the purposes of development, operation and maintenance of water supplies,
- Buildings used for the purpose of natural resource and land management.

19. Range Performance Standards

19.1. All operational ranges including but not limited to small arms ranges (SAR) shall be managed to minimize harmful impacts to the environment within the Upper Cape Water Supply Reserve. Range management at each range shall include to the maximum extent practicable metal recovery and recycling, prevention of fragmentation and ricochets, and prevention of sub-surface percolation of residue associated with the range operations. Camp Edwards shall be held responsible for the implementation of BMPs by authorized range users, including collection and removal of spent ammunition and associated debris.

19.2. Small arms ranges shall only be used in accordance with approved range plans. These plans shall be designed to minimize to the maximum extent practicable the release of metals or other contaminates to the environment outside of specifically approved containment areas/systems. Occasional ricochets that result in rounds landing outside of these containment areas is expected and every effort to minimize and correct these occurrences shall be taken. Failure to follow the approved range plans shall be considered a violation of this EPS.

19.3. All operational SARs shall be closely monitored by the Massachusetts National Guard to assess compliance of the approved range plans as well as the implementation and effectiveness of the range specific BMPs.

19.4. Camp Edwards/Massachusetts National Guard Environmental and Readiness Center shall staff and request appropriate funding to support its SAR management plans.

19.5. All users must use and follow Camp Edwards' Range Control checklists and procedures to:

- Minimize debris on the range (e.g. shell casings, used targets)
- Minimize or control residues on the ranges resulting from training (e.g., unburned constituents, metal shavings from the muzzle blast)
- Ensure the range is being used for the designated purpose in accordance with all applicable plans and approvals

19.6. Camp Edwards is responsible for following range operation procedures and maintaining range pollution prevention systems. Range BMPs shall be reviewed annually for effectiveness and potential improvements in their design, monitoring, maintenance, and operational procedures in an effort to continually improve them. Each year the annual report shall detail the range-specific activities including, but not limited to, the number of rounds fired, number of shooters and their organization, and the number of days the range was in use. The annual report will also detail active SAR groundwater well and lysimeter results, as well as any range maintenance/management activities that took place that training year and the result of such activities, i.e. lbs of brass and projectiles recovered and recycled, etc. The Massachusetts National Guard shall provide regular and unrestricted access for the EMC to all its data and information, and will provide immediate access to environmental samples from the range, including range management and monitoring systems and any other applicable activities operating on the ranges.

19.7. Range plans and BMPs for training areas shall be reviewed and/or updated at least every three years. Management plans for new and upgraded ranges shall be in place prior to construction or utilization of the range. Range plans, at a minimum, will address long-term sustainable use, hydrology and hydrogeology, physical design, operation, management procedures, record keeping, pollution prevention, maintenance, monitoring, and applicable technologies to ensure sustainable range management. Range plans shall be integrated with other training area planning processes and resources.

19.8. The Massachusetts National Guard shall establish procedures for range maintenance and where applicable, maintenance and/or clearance operations to permit the sustainable, compatible, and safe use of operational ranges for their intended purpose within the Upper Cape Water Supply Reserve. In determining the frequency and degree of range maintenance and clearance operations, the Massachusetts National Guard shall consider, at a minimum, the environmental impact and safety hazards, each range's intended use, lease requirements, and the quantities and types of munitions or simulated munitions expended on that range.

APPENDIX B LIST OF CONTACTS

LIST OF CONTACTS

Massachusetts National Guard Environmental & Readiness Center

Emily Kelly Building 3468, Beaman Street Camp Edwards, MA 02542 Telephone: 508-968-5146 emily.d.kelly2.nfg@mail.mil

Impact Area Groundwater Study Program

Pamela Richardson PB 0516 West Outer Road Camp Edwards, MA 02542 Telephone: 508-968-5630 Pamela.j.richardson.nfg@mail.mil

Air Force Center for Civil Engineering

Doug Karson 322 East Inner Road Otis ANG Base, MA 02542 Telephone: 508-968-4678, ext. 2 douglas.karson@us.af.mil

Joint Base Cape Cod

Paul Rendon Building 3468, Beaman Street Camp Edwards, MA 02542 Telephone: 508-968-5145 paul.rendon@state.ma.us

102d Intelligence Wing Massachusetts Air National Guard

Timothy Sandland 158 Reilly Street, 102d Intelligence Wing Otis ANG Base, MA 02542 Telephone: 508-968-4697 timothy.d.sandland.civ@mail.mil

U.S. Coast Guard Base Cape Cod

Elizabeth Kirkpatrick USCG Base Cape Cod, MA 02542 Telephone: 508-968-6696 elizabeth.l.kirkpatrick@uscg.mil

6th Space Warning Squadron (PAVE PAWS)

Patrick McNamara 1 Flatrock Road Sagamore, MA 02561-0428 508-968-3275 patrick.mcnamara.1@us.af.mil

Massachusetts National Guard, Public Affairs Office

LTC Lisa Ahaesy 2 Randolph Road Hanscom AFB, MA 01731 Telephone: 339-202-3950 lisa.m.ahaesy.mil@mail.mil

Environmental Management Commission Acting Environmental Officer

Leonard Pinaud Building 3468, Beaman Street Camp Edwards, MA 02542 Telephone: 508-946-2871 leonard.Pinaud@mass.gov

APPENDIX C FIRING RANGE AND SOLDIER VALIDATION LANE INFORMATION

Operations Maintenance and Monitoring Activities

OPERATIONS, MAINTENANCE & MONITORING ACTIVITIES JULIET & KILO RANGE

TV	20	דר	0
11	2	"	O

Date	Juliet	Kilo
8, 9 Oct 17		Soil sampling performed
13, 14 Oct 17	Pre/post fire inspection (9 cm)	Pre/post fire inspection and water level (W .25 cm; E 6.5 cm
15 Oct 17		Pre/post fire inspection and water level (W .25 cm; E 6.5 cm)
17 Oct 17	Detailed inspection and water level (18 cm); maintenance	Detailed inspection and water level (W 20.5 cm; E 6.5 cm); maintenance: 160 gallons pumped out (W 4 cm; E 6.5 cm)
19 Oct 17	Maintenance: repairs (8 cm)	
24 Oct 17	Monitoring well sampled	
31 Oct 17	Detailed inspection and water level (38 cm); maintenance: 700 gallons pumped (4 cm)	Detailed inspection and water level (W 28 cm; E 6.5 cm); maintenance: 540 gallons (W 1 cm; E 6.5 cm)
2 Nov 17		Pre/post fire inspection (W 1 cm; E 6.5 cm)
17, 19 Nov 17	Pre/post fire inspection (4 cm)	Pre/post fire inspection (W 1 cm; E 6.5 cm)
29 Nov 17	Detailed inspection and water level (11 cm)	Detailed inspection and water level (W 18 cm; E 6.5 cm)
30 Nov 17	Maintenance: 110 gallons pumped (4 cm)	Maintenance: 140 gallons pumped (W 3.5 cm; E 6.5 cm)
24 Jan 18	Detailed inspection and water level (7 cm)	Detailed inspection and water level (W 26 cm; E 6.5 cm); maintenance: 430 gallons pumped (W 4 cm; E 6.5 cm)
4 Feb 18	Detailed inspection and water level (14 cm)	Detailed inspection and water level (W 15 cm; E 6.5 cm)
6 Feb 18	Maintenance: 40 gallons pumped (1 cm)	Maintenance: 60 gallons pumped (W 4 cm; E 6.5 cm)
14 Feb 18	Detailed inspection and water level (4 cm)	Detailed inspection and water level (W 8 cm; E 6.5 cm)
23, 24 Feb 18		Pre/post fire inspection (W 8 cm; E 6.5 cm)
26 Feb 18	Detailed inspection and water level (8 cm)	Detailed inspection and water level (W 13 cm; E 6.5 cm)
1 Mar 18	Detailed inspection and water level (8 cm)	Detailed inspection and water level (W 15 cm; E 6.5 cm)
28 Mar 18	Detailed inspection and water level (7.5 cm)	
3 Apr 18	 D /	Detailed inspection and water level (W 18 cm; E 6.5 cm); maintenance: 150 gallons pumped (W 2 cm; E 6.5 cm); tarp replaced
0,7 Apr 18	Pre/post fire inspection (7.5 cm)	
7,8 Apr 18		Pre/post fire inspection (W 2 cm; E 6.5 cm)
13, 14 Apr 18		Pre/post fire inspection (W 12 cm; E 6.5 cm)
18 Apr 18	Detailed inspection and water level (9 cm)	Detailed inspection and water level (W 12 cm; E 6.5 cm)

Final Annual State of the Reservation Report for Training Year 2018

Date	Juliet	Kilo
27 Apr 18		Pre/post fire inspection (W 12 cm; E 6.5 cm)
28, 29 Apr 18		Pre/post fire inspection (W 12 cm; E 6.5 cm)
1 May 18	Detailed inspection and water level (13 cm)	Detailed inspection and water level (W 13; E 6.5 cm)
3 May 18	Maintenance: 90 gallons pumped (3.5 cm)	Maintenance: 40 gallons pumped; pre/post fire inspection (W 1 cm; E 6.5 cm)
4 May 18	Pre/post fire inspection (3.5 cm)	
16 May 18	Pre/post fire inspection (3.5 cm)	Pre/post fire inspection (W 1 cm; E 6.5 cm)
18, 19 May 18	Pre/post fire inspection (3.5 cm)	
2 Jun 18	Pre/post fire inspection (3.3 cm)	
27 Jul 18		Pre/post fire inspection (W 13.5 cm; E 6.5 cm)
31 Jul 18	Maintenance: 60 gallons pumped (8 cm)	Maintenance: 60 gallons pumped (W 3 cm; E 6.5 cm)
4,5 Aug 18		Pre/post fire inspection (W 3 cm; E 6.5 cm)
17 Aug 18		Maintenance: replaced and repaired target frames (W 3 cm; E 6.5 cm)
18 Aug 18		Pre/post fire inspection (W 3 cm; E 6.5 cm)
25, 26 Aug 18		Pre/post fire inspection (W 3 cm; E 6.5 cm)
7,9 Sep 18	Pre/post fire inspection (8 cm)	Pre/post fire inspection (W 14.5 cm; E 6.5 cm)
13 Sep 18		Maintenance: 70 gallons pumped (W 2 cm; E 6.5 cm)

OPERATIONS, MAINTENANCE & MONITORING ACTIVITIES SIERRA & INDIA RANGES TY 2018

	Sierra and India Ranges Maintena	nce Activities for TY 2018
Date	Sierra	India
5 Oct 17	Environmental monitoring	Environmental monitoring
13, 15 Oct 17	Pre/post fire inspection	Pre/post fire inspection
27, 28 Oct 17	Pre/post fire inspection	Pre/post fire inspection
3, 4 Nov 17	Pre/post fire inspection	Pre/post fire inspection
17 Nov 17	Pre/post fire inspection	Pre/post fire inspection
18 Nov 17	Pre/post fire inspection	
7 Apr 18		Pre/post fire inspection
13 Apr 18	Pre/post fire inspection	
14 Apr 18		Pre/post fire inspection
20 Apr 18	Pre/post fire inspection	Pre/post fire inspection
21 Apr 18	Pre/post fire inspection	
27 Apr 18		Pre/post fire inspection
28 Apr 18		Pre/post fire inspection
4 May 18	Pre/post fire inspection	
11, 12 May 18	Pre/post fire inspection	Pre/post fire inspection; detailed inspection
15 May 18	Pre/post fire inspection	
16 May 18		Pre/post fire inspection; detailed inspection
18 May 18	Pre/post fire inspection	Pre/post fire inspection; detailed inspection
19 May 18		Pre/post fire inspection
1 Jun 18	Pre/post fire inspection	
2 Jun 18	Pre/post fire inspection	Pre/post fire inspection; detailed inspection
3 Jun 18	Pre/post fire inspection	
22 Jun 18		Pre/post fire inspection; detailed inspection
20 Jul 18		Pre/post fire inspection; detailed inspection
3 Aug 18	Pre/post fire inspection	
4 Aug 18		Pre/post fire inspection; detailed inspection
24 Aug 18		Pre/post fire inspection; detailed inspection
7 Sep 18		Pre/post fire inspection; detailed inspection
9 Sep 18		Pre/post fire inspection
19 Sep 18	Pre/post fire inspection	

OPERATIONS, MAINTENANCE & MONITORING ACTIVITIES LIMA RANGE TY 2018

Lima Range Maintenance Activities for TY 2018						
Date	Activity					
10 Oct 17	Soil sampling					
18 May 18	Pre/post fire inspection; detailed inspection					
9 Sep 18	Pre/post fire inspection					

Lead Ammunition Use

Juliet, Kilo and Tango Ranges

LEAD AMMUNITION USE HISTORY									
JULIET RANGE									
Training Year	.40 Cal Lead	9 mm Lead	7.62 mm Lead	5.56 mm Lead	.38 Cal Lead	.45 Cal Lead	.233 Cal Lead	Total	
TY 2018	0	12,781	0	23,802	0	0	0	36,583	
TY 2017	0	26,108	0	25,789	0	0	0	51,897	
TY 2016	0	9,200	0	51,852	0	0	0	61,052	
TY 2015	2,500	24,828	0	36,938	0	1,000	0	65,266	
TY 2014	2,400	18,874	9,000	6,663	0	0	0	36,937	
TY 2013	2,450	9,260	0	27,286	0	0	1,200	40,196	
TY 2012	750	12,819	0	14,457	0	0	3,000	31,026	
TY 2011	0	16,911	0	46,630	0	0	0	63,541	
TY 2010	0	7,311	0	27,060	0	0	0	34,371	
TY 2009	0	4,780	0	11,482	0	0	0	16,262	
TY 2008	0	0	0	0	0	0	0	0	
TY 2007	0	0	0	0	0	0	0	0	
TOTAL	8,100	142,872	9,000	271,959	0	1,000	4,200	437,131	

Note: A STAPP[™] bullet capture system was installed at Juliet Range in August/September 2008.

LEAD AMMUNITION USE HISTORY									
KILO RANGE									
Training Year	.40 Cal Lead	9 mm Lead	7.62 mm Lead	5.56 mm Lead	.38 Cal Lead	.45 Cal Lead	.233 Cal Lead	Total	
TY 2018	0	25,803	0	93,539	0	0	0	119,342	
TY 2017	0	50,147	0	65,515	0	0	0	115,662	
TY 2016	0	21,373	0	28,265	0	0	0	49,638	
TY 2015	0	15,601	0	54,372	0	0	0	69,973	
TY 2014	0	31,304	0	49,052	0	0	0	80,356	
TY 2013	0	731	0	73,011	0	0	0	73,742	
TY 2012	0	7,181	0	52,731	0	0	0	59,912	
TY 2011	14,362	9,850	0	100,942	0	0	0	125,154	
TY 2010	1,450	7,500	0	51,412	0	0	0	60,362	
TY 2009	0	6,675	0	23,108	0	0	0	29,783	
TY 2008	0	0	0	0	0	0	0	0	
TY 2007	0	0	0	0	0	0	0	0	
TOTAL	15,812	176,165	0	591,947	0	0	0	783,924	

Note: A STAPP[™] bullet capture system was installed at Kilo Range in August/September 2008.

LEAD AMMUNITION USE HISTORY TANGO RANGE									
Training Year	.40 Cal Lead	9 mm Lead	7.62 mm Lead	5.56 mm Lead	.38 Cal Lead	.45 Cal Lead	.233 Cal Lead	.22 Cal Lead	Total
TY 2017	0	2,250	4,240	9,380	0	0	0	625	16,495
TY 2016	0	4,200	0	0	0	0	0	0	4,200
TY 2015	0	5,240	0	1,720	0	0	0	0	6,960
TY 2014	0	0	0	3,220	0	0	0	0	3,220
TY 2013	1,600	1,800	0	2,000	0	0	4,550	0	9,950
TY 2012	2,800	7,373	0	1,944	0	0	0	0	12,117
TY 2011	5,200	6,765	0	25,157	0	0	0	0	37,122
TY 2010	40,341	2,496	0	41,042	0	6,449	0	0	90,328
TY 2009	0	31,985	0	105,077	300	0	0	0	137,362
TY 2008	4,075	9,094	4,556	0	0	0	0	0	17,725
TY 2007	0	0	0	8,547	0	0	0	0	8,547
TOTAL	54,016	71,203	8,796	198,087	300	6,449	4,550	625	344,026

Note: A STAPP[™] bullet capture system was installed at Tango Range in July 2006 and dismantled in October 2017.

LEAD AMMUNITION USE HISTORY CUMULATIVE									
Training Year	Echo Range	Sierra Range	KD Range	Tango Range	Juliet Range	Kilo Range	Total		
TY 2018	0	0	0	0	36,583	119,342	155925		
TY 2017	0	0	0	16,495	51,897	115,662	184,054		
TY 2016	0	0	0	4,200	61,052	49,638	114,890		
TY 2015	3471	0	1,993 ³	6,960	65,266	69,973	144,539		
TY 2014	0	0	0	3,220	36,937	80,356	120,513		
TY 2013	0	0	0	9,950	40,196	73,742	123,888		
TY 2012	0	0	0	12,117	31,026	59,912	103,055		
TY 2011	0	2,120 ²	0	37,122	63,541	125,154	227,937		
TY 2010	0	0	0	90,328	34,371	60,362	185,061		
TY 2009	0	0	0	137,362	16,262	29,783	183,407		
TY 2008	0	0	0	17,725	0	0	17,725		
TY 2007	1001	0	0	8,547	0	0	8,647		
TOTAL	474	2,120	1,993	344,026	437,131	783,924	1,569,641		

Notes: 1. Firing at Eduo Range in TY 2007 and TY 2015 were part of tests for reintroducing lead ammunition.

2. Firing at Sierra Range in TY 2011 was part of a Line of Sight Analysis test.

3. Firing at KD Range in TY 2015 was part of a planning-level noise assessment.
Copper Ammunition Use

Sierra and India Ranges

COPPER AMMUNITION USE HISTORY SIERRA AND RANGES							
Training Year	Sierra Range 5.56 Copper	India Range 5.56 Copper	Total				
TY 2018	98,393	105,143	203,536				
TY 2017	95,905	109,892	205,797				
TY 2016	80,747	60,571	141,318				
TY 2015	66,086	12,947	79,033				
TY 2014	46,804	27,872	74,676				
TY 2013	34,493	10,918	45,411				
TY 2012	34,359	6,601	40,960				
TOTAL	456,787	333,944	790,731				

Note: Firing of copper ammunition began at Sierra Range on July 8, 2012 and at India Range on September 15, 2012.

Juliet, Kilo, Tango and India Ranges

Porewater Graphs

Porewater Metals, Lysimeter 003, J Range

Note: 0 readings are nondetect or not sampled. 141 ppb reading just after system clean out that caused ground disturbance within the drainage area at the base of the berm.

Porewater Metals, Lysimeter 003, K Range

Porewater Metals, Lysimeter 013, T Range

Porewater Metals, Lysimeter 001, I Range

Porewater metals, Lysimeter 002, I Range

Porewater Metals, Lysimeter 002, I Range

Firing Range Sampling Reports

Soil Sampling Results, Multi Increment Samples

Field Sample ID	Top Depth (feet bgs)	Bottom Depth (feet bgs)	Date Sampled	Test Method	Analyte	Result Value (mg/kg)	Qualifier	MDL	RL	OMMP Action Levels (mg/kg)	Sample Type	Remarks
SS IRNG001 NOV/18A	0	0.25	11/14/2018	SW846 6010C	Antimony	1 1	I	0.43	17	300	N	100-pt MIS spl
	0	0.20	11/14/2010	011040 00100	7 and monty	1.1	0	0.40	1.7			100-pt
SSJRNG001 NOV18A	0	0.25	11/14/2018	SW846 6010C	Copper	19		1.3	4.3	10,000	N	MIS spl
SSJRNG001_NOV18A	0	0.25	11/14/2018	SW846 6010C	Lead	25	J1	0.43	1.7	3,000	N	MIS spl
												100-pt
SSJRNG001 NOV18B	0	0.25	11/14/2018	SW846 6010C	Antimony	0.90	J	0.43	1.7	300	FR	FR
												100-pt MIS spl
SSJRNG001_NOV18B	0	0.25	11/14/2018	SW846 6010C	Copper	27		1.3	4.3	10,000	FR	FR
												100-pt MIS spl
SSJRNG001 NOV18B	0	0.25	11/14/2018	SW846 6010C	Lead	38		0.43	1.7	3,000	FR	FR
												100-pt MIS spl
SSJRNG001_NOV18C	0	0.25	11/14/2018	SW846 6010C	Antimony	0.67	J	0.43	1.7	300	FR	FR
												100-pt
SSJRNG001 NOV18C	0	0.25	11/14/2018	SW846 6010C	Copper	24		1.3	4.3	10,000	FR	FR
												100-pt
SSJRNG001_NOV18C	0	0.25	11/14/2018	SW846 6010C	Lead	29		0.43	1.7	3,000	FR	FR
SS IRNG002 NOV18	0	0.25	11/14/2018	SW/846 6010C	Antimony	0.63	I	0 49	2.0	300	N	100-pt MIS spl
0001110002 110110	0	0.20	11/14/2010	011040 00100	7 and monty	0.00	0	0.40	2.0			100-pt
SSJRNG002 NOV18	0	0.25	11/14/2018	SW846 6010C	Copper	9.2		1.5	4.9	10,000	N	MIS spl
SSJRNG002 NOV18	0	0.25	11/14/2018	SW846 6010C	Lead	50		0.49	2.0	3,000	Ν	MIS spl
	0	0.25	11/1/2019	SW846 6010C	Antimony	0.40	I	0 43	17	200	Ν	100-pt
	U	0.20	11/14/2010	30040 00100	Anumony	0.49	J	0.43	1.7	300	IN	100-pt
SSJRNG003_NOV18	0	0.25	11/14/2018	SW846 6010C	Copper	8.7		1.3	4.3	10,000	Ν	MIS spl
SSJRNG003 NOV18	0	0.25	11/14/2018	SW846 6010C	Lead	68		0.43	1.7	3,000	N	100-pt MIS spl
SSJRNG004 NOV18	0	0.25	11/14/2018	SW846 6010C	Antimony	0.80	J	0.43	1.7	300	N	100-pt MIS spl

Camp Edwards Small Arms Range Annual Soil Monitoring 2018

Field Sample ID	Top Depth (feet bgs)	Bottom Depth (feet bgs)	Date Sampled	Test Method	Analyte	Result Value (mg/kg)	Qualifier	MDL	RL	OMMP Action Levels (mg/kg)	Sample Type	Remarks
SSJRNG004 NOV18	0	0.25	11/14/2018	SW846 6010C	Copper	24		1.3	4.3	10,000	N	100-pt MIS spl
SSJRNG004 NOV18	0	0.25	11/14/2018	SW846 6010C	Lead	65		0.43	1.7	3,000	Ν	100-pt MIS spl
SSJRNG005_NOV18	0	0.25	11/14/2018	SW846 6010C	Antimony	ND	UJ	0.43	1.7	300	Ν	100-pt MIS spl
SSJRNG005_NOV18	0	0.25	11/14/2018	SW846 6010C	Copper	8.3		1.30	4.3	10,000	Ν	100-pt MIS spl
SSJRNG005 NOV18	0	0.25	11/14/2018	SW846 6010C	Lead	41		0.43	1.7	3,000	Ν	100-pt MIS spl
SSJRNG006 NOV18	0	0.25	11/14/2018	SW846 6010C	Antimony	0.80	J	0.44	1.7	300	Ν	100-pt MIS spl
SSJRNG006 NOV18	0	0.25	11/14/2018	SW846 6010C	Copper	7.3		1.3	4.4	10,000	N	100-pt MIS spl
SSJRNG006_NOV18	0	0.25	11/14/2018	SW846 6010C	Lead	35		0.44	1.7	3,000	N	100-pt MIS spl
SSSRNG001 OCT18	0	0.25	10/26/2018	SW846 6010C	Antimony	ND	UJ	1.2	4.8	300	N	100-pt MIS spl
SSSRNG001_OCT18	0	0.25	10/26/2018	SW846 6010C	Copper	11	J	3.6	12	10.000	N	100-pt MIS spl
SSSRNG001_OCT18	0	0.25	10/26/2018	SW846 6010C	Lead	27		1.2	4.8	3,000	N	100-pt MIS spl

ND/U = non-detectable value

Bold Results Value = ABOVE OMMP ACTION LEVEL

OMMP = Operations, Maintenance and Monitoring Plan RL = reporting limit SLX = location

Firing Range Sampling Reports

Lysimeter Sampling Results

Field Sample ID	Date Sampled	Test Method	Analyte	Result Value (µg/L)	Qualifier	MDL	RL	OMMP Action Levels (µg/L)	Sample Type
LYIRNG001 OCT18	10/24/2018	SW846 6020A	Antimony	4.6	J	2.0	5.0	6	Ν
LYIRNG001 OCT18	10/24/2018	SW846 6020A	Copper	11		1.9	3.0	1,300	Ν
LYIRNG001_OCT18	10/24/2018	SW846 6020A	Lead	2.8	J	1.0	3.0	15	Ν
LYIRNG002_OCT18	10/25/2018	SW846 6020A	Antimony	14		2.0	5.0	6	Ν
LYIRNG002 OCT18	10/25/2018	SW846 6020A	Copper	620		1.9	3.0	1,300	Ν
LYIRNG002 OCT18	10/25/2018	SW846 6020A	Lead	2.0	J	1.0	3.0	15	Ν
LYJRNG001_OCT18	10/25/2018	SW846 6020A	Antimony	ND	U	2.0	5.0	6	Ν
LYJRNG001 OCT18	10/25/2018	SW846 6020A	Copper	3.9		1.9	3.0	1,300	Ν
LYJRNG001 OCT18	10/25/2018	SW846 6020A	Lead	ND	U	1.0	3.0	15	Ν
LYJRNG002_OCT18	10/25/2018	SW846 6020A	Antimony	2.0	J	2.0	5.0	6	Ν
LYJRNG002_OCT18	10/25/2018	SW846 6020A	Copper	4.6		1.9	3.0	1,300	Ν
LYJRNG002 OCT18	10/25/2018	SW846 6020A	Lead	ND	U	1.0	3.0	15	Ν
LYJRNG003 OCT18	10/25/2018	SW846 6020A	Antimony	59		2.0	5.0	6	Ν
LYJRNG003_OCT18D	10/25/2018	SW846 6020A	Antimony	57		2.0	5.0	6	N, FR
LYJRNG003_OCT18	10/25/2018	SW846 6020A	Copper	5.2		1.9	3.0	1,300	Ν
LYJRNG003 OCT18D	10/25/2018	SW846 6020A	Copper	5.2		1.9	3.0	1,300	N, FR
LYJRNG003 OCT18	10/25/2018	SW846 6020A	Lead	ND	U	1.0	3.0	15	Ν
LYJRNG003 OCT18D	10/25/2018	SW846 6020A	Lead	ND	U	1.0	3.0	15	N, FR
LYKRBGD01 OCT18			Antimony					6	Dry or malfunctioning
LYKRBGD01 OCT18			Copper					1,300	Dry or malfunctioning
LYKRBGD01_OCT18			Lead					15	Dry or malfunctioning
LYKRNG001_OCT18	10/25/2018	SW846 6020A	Antimony	ND	U	2.0	5.0	6	Ν
LYKRNG001 OCT18	10/25/2018	SW846 6020A	Copper	ND	U	1.9	3.0	1,300	Ν
LYKRNG001 OCT18	10/25/2018	SW846 6020A	Lead	ND	U	1.0	3.0	15	Ν
LYKRNG002_OCT18	10/26/2018	SW846 6020A	Antimony	ND	U	2.0	5.0	6	Ν
LYKRNG002_OCT18	10/26/2018	SW846 6020A	Copper	ND	U	1.9	3.0	1,300	Ν
LYKRNG002 OCT18	10/26/2018	SW846 6020A	Lead	ND	U	1.0	3.0	15	Ν
LYKRNG003 OCT18	10/26/2018	SW846 6020A	Antimony	16		2.0	5.0	6	Ν
LYKRNG003_OCT18	10/26/2018	SW846 6020A	Copper	25		1.9	3.0	1,300	Ν
LYKRNG003_OCT18	10/26/2018	SW846 6020A	Lead	1.3	J	1.0	3.0	15	Ν
LYKRNG004 OCT18	10/26/2018	SW846 6020A	Antimony	26		2.0	5.0	6	Ν
LYKRNG004 OCT18	10/26/2018	SW846 6020A	Copper	7.2		1.9	3.0	1,300	Ν
LYKRNG004 OCT18	10/26/2018	SW846 6020A	Lead	2.4	J	1.0	3.0	15	Ν

Camp Edwards Small Arms Range Annual Porewater Monitoring Results 2018

Final Annual State of the Reservation Report for Training Year 2018

LYLRNG001 OCT18	10/26/2018	SW846 6020A	Antimony	ND	U	2.0	5.0	6	Ν
LYLRNG001 OCT18	10/26/2018	SW846 6020A	Copper	14		1.9	3.0	1,300	Ν
LYLRNG001 OCT18	10/26/2018	SW846 6020A	Lead	1.0	J	1.0	3.0	15	Ν
LYLRNG002_OCT18	10/26/2018	SW846 6020A	Antimony	ND	U	2.0	5.0	6	Ν
LYLRNG002 OCT18	10/26/2018	SW846 6020A	Copper	ND	U	1.9	3.0	1,300	Ν
LYLRNG002 OCT18	10/26/2018	SW846 6020A	Lead	ND	U	1.0	3.0	15	N
LYSRBGD01_OCT18	10/24/2018	SW846 6020A	Antimony	ND	U	2.0	5.0	6	N
LYSRBGD01 OCT18	10/24/2018	SW846 6020A	Copper	2.6	J	1.9	3.0	1,300	N
LYSRBGD01 OCT18	10/24/2018	SW846 6020A	Lead	ND	U	1.0	3.0	15	N
LYSRNG001 OCT18	10/24/2018	SW846 6020A	Antimony	ND	U	2.0	5.0	6	Ν
LYSRNG001_OCT18	10/24/2018	SW846 6020A	Copper	6.6		1.9	3.0	1,300	Ν
LYSRNG001 OCT18	10/24/2018	SW846 6020A	Lead	ND	U	1.0	3.0	15	Ν
LYSRNG002 OCT18	10/24/2018	SW846 6020A	Antimony	ND	U	2.0	5.0	6	Ν
LYSRNG002_OCT18	10/24/2018	SW846 6020A	Copper	2.7	J	1.9	3.0	1,300	Ν
LYSRNG002_OCT18	10/24/2018	SW846 6020A	Lead	ND	U	1.0	3.0	15	Ν
LYTRBG001 OCT18	10/25/2018	SW846 6020A	Antimony	ND	U	2.0	5.0	6	N
LYTRBG001 OCT18	10/25/2018	SW846 6020A	Copper	ND	U	1.9	3.0	1,300	Ν
LYTRBG001_OCT18	10/25/2015	SW846 6020A	Lead	ND	U	1.0	3.0	15	Ν
LYTRNG011 OCT18			Antimony					6	Confirmed destroyed
LYTRNG011 OCT18			Copper					1,300	Confirmed destroyed
LYTRNG011_OCT18			Lead					15	Confirmed destroyed
LYTRNG012_OCT18			Antimony					6	Confirmed destroyed
LYTRNG012 OCT18			Copper					1,300	Confirmed destroyed
LYTRNG012 OCT18			Lead					15	Confirmed destroyed
LYTRNG013_OCT18	10/25/2018	SW846 6020A	Antimony	75		2.0	5.0	6	Ν
LYTRNG013_OCT18	10/25/2018	SW846 6020A	Copper	10		1.9	3.0	1,300	Ν
LYTRNG013_OCT18	10/25/2018	SW846 6020A	Lead	ND	U	1.0	3.0	15	N

Bold Results Value = ABOVE OMMP ACTION LEVEL

N = native sample

ND/U = non-detectable value

MDL = method detection limit

OMMP = Operations, Maintenance and Monitoring Plan

RL = reporting limit

SLX = location

Juliet and Kilo Ranges, STAPP bullet catcher system, Camp Edwards, Massachusetts LY=Lysimeter, MW=Monitoring Well, SS=Soil Sample

Tango Range with STAPP bullet catcher system, Camp Edwards, Massachusetts $_{LY=Lysimeter,\ MW=Monitoring\ Well,\ SS=Soil\ Sample}$

India Range, Copper Ammunition Only, Camp Edwards, Massachusetts. LY=Lysimeter, MW=Monitoring Well, SS=Soil Sample

Firing Range Sampling Reports

Groundwater Sampling Results

Field Sample ID	Top Depth (feet bgs)	Bottom Depth (feet bgs)	Date Sampled	Test Method	Analyte	Result Value (µg/L)	Qualifier	MDL	RL	OMMP Action Levels (µg/L)	Sample Type	Remarks
MW-639S OCT18	84.32	92.51	10/25/2018	SW846 6020A	Lead	ND	U	1.0	3.0	7.5	Ν	Low Flow
MW- 639S OCT18D	84.32	92.51	10/25/2018	SW846 6020A	Lead	ND	U	1.0	3.0	7.5	N	Low Flow, FR
MW-639S_OCT18	84.32	92.51	10/25/2018	SW846 6020A	Copper	ND	U	1.9	3.0	650	Ν	Low Flow
MW-												
639S_OCT18D	84.32	92.51	10/25/2018	SW846 6020A	Copper	ND	U	1.9	3.0	650	N	Low Flow, FR
MW-639S OCT18	84.32	92.51	10/25/2018	SW846 6020A	Antimony	ND	U	2.0	5.0	3	N	Low Flow
MW- 639S OCT18D	84.32	92.51	10/25/2018	SW846 6020A	Antimony	ND	U	2.0	5.0	3	Ν	Low Flow, FR
MW-471S OCT18	88.30	92.45	10/26/2018	SW846 6020A	Lead	ND	U	1.0	3.0	7.5	Ν	Low Flow
MW- 471S OCT18D	88.30	92.45	10/26/2018	SW846 6020A	Lead	ND	U	1.0	3.0	7.5	Ν	Low Flow, FR
MW-471S OCT18	88.30	92.45	10/26/2018	SW846 6020A	Copper	ND	U	1.9	3.0	650	Ν	Low Flow
MW- 471S_OCT18D	88.30	92.45	10/26/2018	SW846 6020A	Copper	ND	U	1.9	3.0	650	Ν	Low Flow, FR
MW-471S_OCT18	88.30	92.45	10/26/2018	SW846 6020A	Antimony	ND	U	2.0	5.0	3	Ν	Low Flow
MW-												
471S OCT18D	88.30	92.45	10/26/2018	SW846 6020A	Antimony	ND	U	2.0	5.0	3	N	Low Flow, FR
MW-472S OCT18	90.19	94.76	10/25/2018	SW846 6020A	Lead	ND	U	1.9	3.0	7.5	N	Low Flow
MW-472S OCT18	90.19	94.76	10/25/2018	SW846 6020A	Copper	ND	U	2.0	5.0	650	N	Low Flow
MW-472S_OCT18	90.19	94.76	10/25/2018	SW846 6020A	Antimony	ND	U	2.0	5.0	3	N	Low Flow
MW-474S OCT18	90.18	96.00	10/25/2018	SW846 6020A	Lead	ND	U	1.9	3.0	7.5	Ν	Low Flow
MW-474S_OCT18	90.18	96.00	10/25/2018	SW846 6020A	Copper	ND	U	2.0	5.0	650	Ν	Low Flow
MW-474S OCT18	90.18	96.00	10/25/2018	SW846 6020A	Antimony	ND	U	2.0	5.0	3	Ν	Low Flow
MW-465S OCT18	140.77	146.94	10/26/2018	SW846 6020A	Lead	ND	J	1.9	3.0	7.5	Ν	Low Flow
MW-465S OCT18	140.77	146.94	10/26/2018	SW846 6020A	Copper	10		2.0	5.0	650	Ν	Low Flow
MW-465S_OCT18	140.77	146.94	10/26/2018	SW846 6020A	Antimony	4.4	J	2.0	5.0	3	Ν	Low Flow
MW-466S OCT18	122.60	137.87	10/26/2018	SW846 6020A	Lead	ND	U	1.9	3.0	7.5	Ν	Low Flow
MW-466S OCT18	122.60	137.87	10/26/2018	SW846 6020A	Copper	ND	U	2.0	5.0	650	Ν	Low Flow
MW-466S OCT18	122.60	137.87	10/26/2018	SW846 6020A	Antimony	ND	U	2.0	5.0	3	N	Low Flow
MW-467S OCT18	128.81	135.00	10/25/2018	SW846 6020A	Lead	3.3		1.9	3.0	7.5	N	Low Flow
MW-467S OCT18	128.81	135.00	10/25/2018	SW846 6020A	Copper	53		2.0	5.0	650	Ν	Low Flow
MW-467S OCT18	128.81	135.00	10/25/2018	SW846 6020A	Antimony	ND	U	2.0	5.0	3	Ν	Low Flow

Camp Edwards Small Arms Range Annual Groundwater Monitoring Results October 2018

MDL = method detection limit N = native sample ND/U = non-detectable value OMMP = Operations, Maintenance and Monitoring Plan RL = reporting limit SLX = location Bold Results Value = ABOVE OMMP ACTION LEVEL

Firing Range Sampling Reports

XRF Results

Camp Edwards Small Arms Range XRF Copper Reading Results 2018

Sierra Range

10/24/2018

Sample ID	Reading #1	Reading #2	Reading #3				
SSSRNGXRF001	152 ± 13	171 ± 13	178 ± 13				
SSSRNGXRF002	125 ± 12	135 ± 12	133 ± 12				
SSSRNGXRF003	28 ± 9	38 ± 10	28 ± 13				
Background * 48 ± 12 38 ± 12 28 ± 11							
Notes: All readings in parts per m	Notes: All readings in parts per million (ppm)						
* - Background Copper reading taken from concrete floor of							
S Range bleachers to e	eliminated backgro	und interference.					

Soldier Validation Lane Annual Report

Camp Edwards --- Massachusetts Army National Guard

Soldier Validation Lane Annual Monitoring Report

November 2018

(NHESP Tracking No.: 08-24210)

Soldier Validation Lane Use

No containers were placed or moved in soldier validation lanes (SVL) in 2018. All maneuver activities associated with the lanes were limited to established roads, road shoulders, and roadways within the power line right of ways.

SVL Assessments after 2018 Training Season

All SVL sites with conex containers were visited in November 2018 to evaluate training impacts at sites in the last training season. The assessment methodology matched the assessment performed in the Baseline Condition Assessment Report and FYs 12-17, to provide a means of comparison. The conex containers replicate buildings and prop materials are utilized to create a more realistic setting, such as barrels, bicycles, grills, tires, wall sections, etc. Some of these items were moved around the sites, and possibly a few were added in 2018, but there were no major additions or subtractions made in 2018. The chain link fence around SVL 3 is in the process of being replaced/repaired (Fig. 1), and a small group of pitch pines were removed at SVL 21 (Fig. 2). The erosion control implemented in 2016-2017 at SVL3 remains unchanged, but the erosion along the pathway hasn't worsened (Fig. 3). There is one less material pile at SVL 17 than there was in 2017, and there is one section of dirt road where rutting has worsened (Fig. 4).

Conclusion

All regulatory conditions were followed during use of the SVLs for training. Most crossion and rutting impacts have remained static on the lanes as expected with regular levels of vehicle use and regular stormwater runoff on dirt roads. The dirt roads in SVL 17 will be targeted for repair of rutting and crossion. Currently, the site is not used as an SVL, as the conex containers were removed in 2016. No areas were repaired in 2018 other than the ongoing fence replacement at SVL 3. Based on a renewed LRAM emphasis on managing pitch pine before it can choke out training areas, all SVLs will be prioritized for removing juvenile pitch pine encroaching on training assets. The MAARNG will continue to strive to minimize environmental impacts from these lanes by following the established guidelines.

Figure 1: Fence replacement in progress at SVI. 3.

Figure 2: Small patch of pitch pine in 2017 (left), and no longer there in 2018 (right).

Figure 3: Erosion control at SVI. 3, no additional crosion since 2017.

Figure 4: Increased rutting at one of the entrances to SVI, 17.

APPENDIX D ENVIRONMENTAL LAWS AND REGULATIONS

	GOVERNING MAARNG ACTIVITIES IN THE RESERVE								
Reserve EPS	Federal Law / Regulation	State Law / Regulation	DoD Regulation						
Groundwater Resources	Clean Water Act Safe Drinking Water Act	Drinking Water Quality Standards (310 CMR 22.00) State Wellhead Protection (310 CMR 22.21) Water Management Act (310 CMR 36.00)	AR 200-1 AR 200-2 Camp Edwards Regulation (CER) 385-63						
Wetlands and Surface Water	Clean Water Act Coastal Zone Management Act Floodplains Management (EO 11988) Protection of Wetlands (EO 11990) Rivers and Harbors Act of 1899 Sikes Act Wetlands Management (EO 11990)	Massachusetts Wetlands Protection Act (M.G.L. c. 131, s40; 310 CMR 100.00)	AR 200-2 CER 385-63						
Rare Species	Federal Endangered Species Act Sikes Act	Massachusetts Endangered Species Act (M.G.L. c. 131A, 321 CMR 10.00)	AR 200-1 AR 200-2 AR 200-3 CER 385-63						
Soil Conservation	Sikes Act Soils and Water Conservation Act Use of Off-Road Vehicles on Public Lands (EO 11989)		AR 200-1 AR 200-2 AR 200-3 CER 385-63						
Vegetation Management	American Indian Religious Freedom Act Environmental Justice (EO 12898) Exotic Organisms (EO 11987) Sikes Act		AR 200-1 AR 200-2 AR 200-3 CER 385-63						
Habitat Management	Sikes Act	Massachusetts Endangered Species Act (M.G.L. c. 131A, 321 CMR 10.00)	AR 200-1 AR 200-2 AR 200-3 CER 385-63						
Wildlife Management	Fish and Wildlife Conservation Act Migratory Bird Conservation Act Migratory Bird Treaty Act Sikes Act		AR 200-1 AR 200-2 AR 200-3 CER 385-63						
Air Quality	Clean Air Act	State Air Quality Regulations (310 CMR 4.00)	AR 200-1 AR 200-2 CER 385-63						

ENVIRONMENTAL LAWS AND REGULATIONS

		WS AND REGULATIONS	
Pasarya EPS	Endergi Law / Regulation	State Law / Regulation	DoD Regulation
Noise Management	Federal Interagency Committee Land Noise Control Act Occupational Safety & Health Act Use Planning Standards on Urban Noise, Guidelines for Considering Noise in Land Planning and Control (June 1990)	Sidie Law / Regolution	AR 200-1 AR 200-2
Pest Management	Animal Damage Control Act Federal Insecticide, Fungicide, and Rodenticide Act Noxious Weed Act Resource Conservation and Recovery Act Sikes Act Toxic Substances Control Act		DoD 4150.7 AR 200-1 AR 200-2 AR 200-5 AR 420-47
Fire Management	Clean Air Act Sikes Act The National Fire Code Uniform Fire Code	State Air Quality Regulations (310 CMR 4.00)	AR 200-1 AR 200-2 AR 200-3 AR 420-90 CER 385-63
Storm Water Management	Clean Water Act NPDES discharge permitting and limitations	Massachusetts Wetlands Protection Act (M.G.L. c. 131 s.40, 310 CMR 10.00.)	AR 200-1 AR 200-2
Wastewater	Clean Water Act	Title V (310 CMR 15.00)	AR 200-1 CER 385-63
Solid Waste	Resource Conservation and Recovery Act Toxic Substances Control Act	State Solid Waste Handling and Disposal (310 CMR 16.00/19.00)	AR 200-1 AR 200-2 AR 420-47 CER 385-63
Hazardous Materials	Asbestos Hazard Emergency Response (40 CFR 763) Federal Insecticide, Fungicide and Rodenticide Act Hazard Communication Standard Program (29 CFR 1910.1200) Lead Contamination Control Act OSHA (29 CFR 1910, 29 USC 91- 596) Poison Prevention Packaging Act Toxic Substances Control Act	Hazardous Substances Labeling Law (105 CMR 650.00)	AR 200-1 AR 200-2 CER 385-63

	GOVERNING MAARING	ACTIVITIES IN THE RESERVE	
Reserve EPS	Federal Law / Regulation	State Law / Regulation	DoD Regulation
Hazardous Waste	Clean Air Act Clean Water Act Emergency Preparedness and Community Right-To-Know Act Federal Facilities Compliance Act Hazardous Waste Operations and Emergency Response Medical Waste Tracking National Fire Code Oil Pollution Act Pollution Prevention Act Resource Conservation and Recovery Act The National Contingency Plan Underground Storage Tank Program (RCRA, Title I) Uniform Building and Fire Codes Comprehensive Environmental Response, Compensation, and Liability Act	Department of Transportation regulations regarding shipping and transportation, Hazardous Waste Management and Transportation (310 CMR 30.000) Management of Medical Waste (105 CMR 480) Pesticide use (333 CMR 1.00 – 12.00) Solid waste facilities management (310 CMR 16.00/19.00) State right-to-know requirements (105 CMR 670.00) Title V (310 CMR 15.00) Toxic use reduction (310 CMR 5.00) Underground storage tanks standards (527 CMR 4.00 and 9.0) Massachusetts Contingency Plan (310 CMR 40.00)	AR 200-1 AR 200-2 AR 420-47 CER 385-63
Vehicle	Use of Off-Road Vehicles on Public Lands (EO 11989)		AR 200-2 CER 385-63
General Use And Access	Use of Off-Road Vehicles on Public Lands (EO 11989)		AR 200-1 AR 200-2 CER 385-63

ENVIRONMENTAL LAWS AND REGULATIONS

ENVIRONMENTAL LAWS AND REGULATIONS GOVERNING MAARNG ACTIVITIES IN THE RESERVE

Reserve EPS	Federal Law / Regulation	State Law / Regulation	DoD Regulation
Cultural	Antiquities Act of 1906	Massachusetts General Laws,	AR 200-2
Resources	Archeological and Historic	Chapter 9, sections 26-27C as	AR 200-4
	Preservation Act of 1974	amended by Chapter 254 of the	DA PAM 200-4
(This EPS	Archeological Resources	Acts of 1988 (950 CMR 71.00)	Office of the Secretary
refers to	Protection Act of 1979		of Defense, Annotated
archeological	Consultation and Coordination	Massachusetts Environmental	Policy Document for the
resources only;	with Indian Tribal Governments	Policy Act (MEPA)	American Indian and
the list of	(Executive Order 13175)	Massachusetts General Laws	Alaska Native Policy
regulations	Curation of Federally	Chapter 30, sections 61 through	(27 October 1999)
cited here has	Owned/Administered	62H, inclusive (301 CMR 11.00)	
therefore	Archeological Collections		
been	Executive Memorandum of April	Massachusetts General Laws,	
restricted to	19, 1994 – Government-to-	Chapter 38, section 6B: Chapter	
those that	Government Relations with	9, sections 26A and 27C; Chapter	
pertain to	American Tribal Governments	7, section 38A; Chapter 114,	
protection of	National Environmental Policy	section 17; as amended by	
archeological	Act of 1966, as amended	Chapter 659 of the Acts of 1983	
resources)	Native American Graves	and Chapter 386 of the Acts of	
	Protection and Repatriation Act	1989	
	of 1990		

DOD Regulations include all regulations and directives of the Department of Defense, Department of the Army, and National Guard Bureau.

AR = Army Regulation

CER – Camp Edwards Regulation

CFR – Code of Federal Regulations

CMR - Code of Massachusetts Regulations

DA PAM = Department of Army Pamphlet

EO – Executive Order

M.G.L – Massachusetts General Laws

RCRA – Resource Conservation and Recovery Act

APPENDIX E WATER SUPPLY INFORMATION
2018 Long Term Monitoring Sentry Well Sampling Results Upper Cape Regional Water Supply Cooperative

		AL			LETTER	OF TR/	NSMITTAL
		. 1		DATE:	08/22/2018	JOB NO:	17006-00
W	ate	Prm	ark	ATTEN	HON: Mr. Ger	ard Martin	
173	i Labot Stre	et + Lowell, MA	01854	RE:	Sentry Well Sa	mpling Rea	ults- 2018 Sampling Round
A-84ic	e 978.452.	9696 1ax 978a	453,9908	Upper	Cape Regional W	ater Supply	(UCRWS)
ro: Mas	sDEP			Long-1	erm Monitoring	Sentry Well	Sampling Results
Sout	heast Re	gional Office		1.1			
20 R	tiverside	Drive.		-			
Lake	eville, M	A 02347					
54 12	noy Drawin opy of Lette	Alia	Prints Dinange Under	Plans	over vin 🛛 Feelba Samples		PS the following firms: Reputs
NO. 1	TEM	QUANTITY			DESCRIPTI	ON	
REMARKS:	CTRANSM For approv For your u As request For review	ITTED as checka al ac ad rand comment s for the Upper	ed helow: Approved a Returned & For bids du Cape Regional Wate	es submitted es miled er corretations e s r Supply Cooper	Resul Subn Retur ntive 2016 Senity	omit n P/ints Well Samplin	Copies for approval Copies for distribution Corrected prints returned other loon to Watermark g Round of the shallow screens
REMARKS: III Gerard, Attached are if you have	TRANSM For approv For your o As request For review the result uny question	FTTED as checks fal se ed r and comment s for the Upper sits or require a	ed helow: Approved a Returned & Returned & For bids du Cape Regional Wate dditional information	es submitted es mited or corretations e s <u>bloase give me</u>	Resul Subn Retur ntive 2018 Sentry à call at 978-452- Thank you.	omit n Pronts Well Samplin 2696,	Copies for approval Copies for distribution Corrected prints returned after loan to Watermark g Round of the shallow screens
REMARKS: III Gerard, Attached are	CTRANSM For approv For your u As request For review	rTTRD as checks ral se and comment s for the Upper ms or require an	ed helow: Approved a Returned & Returned & For bids do For bids do Cape Regional Wate dditional information	es submitted es mited er corretations e plaase give me	Resul Suba Retur ntive 2018 Sentry à cell at 978-452- Thank you, Olaf Westph	omit ut Prints Well Samplin 2696. alen	Copies for approval Copies for distribution Corrected prints returned after loan to Watermark g Roard of the shallow screens

Environmental Infrastructure Buildings & Facilities

August 22, 2018

Mr. Dan Mahoney, Chair Upper Cape Regional Water Supply Cooperative (UCRWS) P.O. Box 373 Mashpee, MA 02649-0373

Subject:

Results of 2018 Sampling Round Long-Term Monitoring Well Sampling Services Upper Cape Regional Water Supply (UCRWS) Cooperative – Long-Term Monitoring Plan

Dear Mr. Mahoney:

In accordance with our proposal dated July 29, 2015, and as authorized by the UCRWS on March 28, 2018, we are pleased to submit the results of the 2018 Sampling Round that was performed by Watermark Environmental, Inc. (Watermark) on May 23 and 24, 2018. Draft results were provided on July 27, 2018. During the 2018 Sampling Round, seven shallow well screens (C-1S through C-7S) were sampled in accordance with the UCRWS Long-Term Monitoring (LTM) Plan, as amended on October 22, 2007. The groundwater sample analyses were performed by Envirotech Laboratories Inc. of Sandwich. Massachusetts (Environech), TestAmerica Laboratories, Inc. of Savannah, Georgia and its subsidiaries (TestAmerica), and their subcontractor Chemserve Environmental Laboratory, of Milford, New Hampshire (subcontracted to Alpha Analytical of Westborough, Massachusetts).

We have completed a review of the Sample Data Summary and Extended Data Packages provided by TestAmerica and by Envirotech and have confirmed that the quality control objectives established for field sampling and laboratory analyses efforts have been effectively met. The laboratory results of the sampling effort have been tabulated in the attached 2018 Sampling Results Tables (Attachment A). Results for all volatile organic compounds (VOCs), 1,2-dibromoethane (EDB), perchlorate, and explosives compounds were non-detect, with the exception of RDX and chloroform. The results are consistent with historic data for these monitoring wells with the exception of RDX.

RDX was detected slightly above the laboratory reporting limit of 0.00025 mg/L at C-1S and C-4S. There is no Massachusetts Maximum Contaminant Level (MMCL) for RDX; however, United States Environmental Protection Agency (EPA) Office of Water's 2018 Edition of the Drinking Water Standards (EPA 822-F-18-001) provides a Lifetime Health Advisory of 0.002 mg/L for RDX. In response to the RDX detections, these two wells were resampled by Watermark on August 1, 2018, and tested for explosives under contract with the United States Army Corps of Engineers (USACE). Based on the non-validated preliminary data, these RDX detections were not repeatable.

The chloroform detections at C-1S, C-2S, C-3S, and C-7S were all below its Massachusetts Drinking Water Guideline. Water quality results were at or below their respective standards, with the exception of pH; pH measured slightly more acidic than the acceptable range of Massachusetts Secondary Maximum Contaminant Levels (SMCL) in each of the well screens. Note: The SMCL is only a guideline and the pH results are consistent with historic and local data.

175 Cabe! Street + Lowell, MA 01851 + Office: 978,452,9696 + Fix: 978,453,9988 + www.watermarkenv.com

Mir Dan Mahoney Results of 2018 Sempling Round Augrel 27, 2018 Page 2 of 2

Once again, we appreciate this opportunity to be of service to the UCRWS and we look forward to working with you in the future. If you have any questions regarding this submittal, please do not hesitate to contact me at (978) 452-9696.

Sincerely, WATERMARK

Olat Westmaten, PG, LSP Project Manager

Attachments: Attachment A Attachment B

2018 Sampling Results Tables Chain of Custody Forms, Low Flow Data - Field Results, 2018 Sampling Event

cer.

J. Spangenberger (Watermark) File 17005-00/WLC3499

Watermark

ATTACHMENT A 2018 Sampling Results Tables

Watermark

Table 1-1 Physical-Chemical Parameters Shallow Screens at Sentry Wells 2018 Sampling Results Upper Cape Regional Water Supply

Sample (D	Water Quality Standard Level ^{TD}	l aboratory Reporting	C-15	C-28	CSS	C-4S	C-55	C-65	C-78	
Sample Date	Level	Limit	05/23/2018	05/23/2018	95/24/2018	05/24/2018	05/23/2018	05/23/2018	05/24/2018	
Physical-Chemical										
pH Method SM 4500 H-B	6.5 - 8.5 ⁽³⁾	NA	5.05	6.11	6.06	-9.30	6.22	16.14	6.17	
Alkalinity - Total, as CaCO3 (mg/L) Method SM 2320 B	NF	2.5	62	5.6	5.7	6.7	9,3	0.1	5.7	
Turbidity (NTU) Method SM 2130 B	ŤŤ	1.6	1,2	st.a	2.0	5.5	M	3,5	<1.6	
Specific Conductance (unlowiem @ 25 °C) Methec EPA (20.)	NE	ino	34	13	46	-43	50.	51	47	

Notes:

Samples were analyzed by Fovirerech Liberatories Inc. of Sandwich, Massachusetts,

⁽¹⁾ Water Quality Standard Levels are the Massachraetts Maximum Contaminant Level (MMCL, 2016) caless otherwise notee.

⁽²⁾ Water Quality Steadard Levels are from the Secondary Maximum Contaminant Levels (SMCL, 2016).

 $N \equiv = Not Established$ NA = Not Applicable TT – Treatment Technique ing:L = Milligrens per Liter "C = degrees Celsius < = Less Thun NTU = Nephelometric Turbidity Units umbos/em = Microneros per Certimeter

> Preps ed By: AEC Creeked By: OW

> > August 2018 WLC3499

17015-00 Long-Term Montheling Well Sampling Services Unper Cape Regional Water Supply Cooperation, Moderne, MA

Page 1 of 1

Watermade

Table 1-2 Volume Organile Compounds - CPA Method 524/2 (regT) Stallow Streams of Sentry Wells 2014 Sampling Results Typer Cope Regional Water Supply

Wäter 0.38 Sample 10 6-15 6.35 1:35 C-68 Lobomins 12-48 1-85 Collin Reporting Simpland Linit Level Sindle De (#g%) 85/23/2014 05/23/2010 01/2//5018 SNAMPORA 05/21/2018 05032014 05/242018 (ng))-j Trans I.3 Dichlordprozese Ellyfaetzese Urschloreffinnenietame 0.0051 prome <0.00035 * 0 0005 >0.0005 1220105 <10.0000 <0.0366 <0.0005 0.0002 < 0.0005 +10,0005 <0.000 < 0 mpe 8005 <0.0005 <0.0005 < 0.000£ 1,1 <00005 <0.0003 < 0.00025 < 0.0105 <0.0005 < 0.0005 0.00525 Hexaelianeneydicae Isaonyy Souccae 陸陸 h (0024 <0.0005 <1710019 × 0.0025 <quite <0.4005 <0 00015 < 0.0002 < 0.0005 ÷ 0.0003 < 0.0055 < 0,0505 <0.001 0.0023 ALC: UNKER < 0.0005 < 0.0005 < 0.6005 p-lapprop/dottene 推 0.000 <0,000 <0.00D <1100.8 <\$.0005 · Maligene atlande (Dichterenethure) Nijthänkene 5,650 0,6013 < 0.0005 < 0.00075 <0.00015 KC /IDDS 30,000 \$10,0000 20.008 .0.50 -0,70) 0.147 0,201 -0.601 100.00 40,001 27.03) <0.005 < 0.0005 -0.0003 <0.0005 Berstere d date \$1,2005 <0.000 0.0005 NE 1.Popylicasese < 0.0052 < 0.0005 < 0.00035 00,0005 C1: 0002 <0.000 < 0.00015 Ngrens 1,1,1,2-Tensolikardetani e 1,1,2,2-Tensolikardetani e 0.0205 < 0,0003 < 0,0005 <0.002 <0.0055 -011055 <.0/1005 0.0005 ~ 0.0005 ÷ 0.0005 R1 NE <0.0000 < 0.0015 < 0.0015 < 0.0035 IIIb. NH 0,005 < 0.0005 0,000 < 0.0003 < 0.0002 <0.00005 40,0005 1.0.0003 Terrohiomernylene djarns <0.000 clunk <0.0005 <0.0075 19965 /1995 < 0.0003 < 0.0003 < 0.0003 ×31.002* Folutet 0.0505 < 0.0005 < 0.000 0.0005 < 0.0022 ×. 1,2,3.Trichtendenzene 1,2,4-Trichtendenzene 1NP 17.07 < 0.0056 courses. <103005 <0.000 0.005 ÷0.00035 < 0.0005 \$10.0016 < 0.0005 0.0005 40.002 1005 0,000 ×0.000 < 10 ME <0.0005 1.1.1.3'netternetena 11.2 0.0006 <0.0008 ×0.0008 < 0.0005 < 0.0005 < 0.0003 < 0.0003 1.0 0005 0.0005 1,1,2-Trichlorestrue 0.005 \$ 0.0075 1015 × mone 20.000 40.0005 4.0.000 < 0.0005 0.001 × 0.0005 1.04% < 0.0005 Fristlemeterra 0.081 0,0005 < 0.0005 < 0.0075 1,2,3-Tricflorepropue 1,2,4-Trimetaylamore NP < 0.00025 10.002 < 0.0305 < D, CHERY <8.00735 CHARS <0.0005 <0.0008 <0.002 NP NP 0,0005 < 0.000 0.0105 < 0.0005 < 0.0003 1.7,5 Trimenylaerzano Viay) chlurida < 0.0109 <10.005 <80000 <10005 <10.0005 < 0.0025 <0.0006 \$10005 0.0105 <1032 0.003 < 0.00055 <0.0012 < 11/2015 0.0011 < 0.0006 p-Xylenn 1020 0.0005 < 0.0006 <0.0005 <0.020F < 0.0015 < 0.0005 < 0.0123 < 6,0105 0,0105 < 0.0128 -Fil-Mate victoria 2002.0.5 <0.0015 < 0.0226 < 0.0005 n-Xulens & p-Xulme 2,0005 ×10.0000 NE +0.0005 schihles. Sembaran :0.070; el contrato en <0.0003 ×0.000 <0.0005 +0.0007 0.4005 < 0.3017 < 0.000 correct chimemortheses NF ×0.0005 ~0.0085 10.000 NE < 0.001% - district 100005 10.0025 <0.035 < 0.0006 <0.0806 niofana 8 -0.001 -20.001 00.0017 oromethics 0.010 160.0 <0.001 -:0.001 视频 <0,00) whethyl tent-buryl currer (MIISE) -10.0205 : 0.0005 < 6.023 × 0.000 cianos 0.070 0.0001 <0 010s < 0.5615 < 0.0008 < 0.0005 < 0.0004 < 0.0005 11,005,5 NE 02005 0.0008 < 0.0215 × 0.0215 > 0,00005 <001007 n-Bustlemane < 0.0105 co-Buiylbenaena 0.0005 0.0013 +30,0308 < 0.00005 < 0.00005 en-Durybouren < 0:0005 <0:0005 < 0.0015 < 0.0015 iα. D 56815 <d 0.005 <0.02005 < 0,6205 < 6.0003 ,9005 intern tetradilerid 0.005 0.0005 < 0,0105 -16 0005 <-0,0065 -0.0005 < 0.0005 illorobeceme DOMES < 0.0008 < 0.0005 - KO 6005 < 0.0005< 0.0015 Simonecilaronothine NE 0.0085 <0.0105 120.0340 <0.001 0100 < 0.0006 < 0.001 < 9,0005 < 0.001 <0.001 < 0.001 biritadi mar 15t 6,051 ~0.001 <0.001 0.0129 0.0005 0.1014 0.002 1,00025 ÷0.0305 ~ 0.0003 + 0.0005 0.0030 Homeshoe NE 0.0025 < 0.0505 5.0,0005 60,6002 CONTRACT 100,010 < 54905 Transidiaria (reCalemenhanca N 0.0005 0.0000 <0.005 < 0,0005 < 6,0905 < 0.0005 × 0.0965 <376905 < 0.5005 I Chiolotolarine (p. Chiorotolarine) SE. 40,0505 10.0015 <11.0028 CHINES <0.0005 < 3,1205 continue. SE 0.0025 +93505 4.5.9005 < 0,10035 <0.000 100000 Spenis ¢ 0.0 005 2 Dichlomboratre (p.10,11) 化反相的 < 0 10025 + 0.0005 < 0.0005 0.0625 < 0.00005 73 10,0004 5.8.0005 1.0.0005 <0.0005 ,3-Dichlensbenzene (no-DEB) N 0.0905 <1.6005 <0,0005 <0.0005 <162005 0,00% d-Dichimshermine (p-01.1s) 0.00 < 0.0005 < 0.0005 \$0.1003 ×0.0003 <0.000S R.B.COUS Dichlorogillacogneticase. 0.0014 NO DESIGNATION OF THE OWNER OWNER OF THE OWNER OWNE OWNER OWNER OWNER OWNER OWNER OWNE OWNER OWNER 10.0005 <4.0546 > 500005 ×0.2005 ~ 0.4005 10,0003 < b stats 10,0005 0.0005 -01112015 - 0.2605 *0:0005 L-Dichleveethane 0.001 0.0075 < 0.0005 0.00055 \$1,0005 <0,1005 \$ 0,0003 < 63005 3-Dichlessethan 0.0005 4.0.0005 0,007 1.1-Dichlargethylene cis-1.2-Dichlargethylene 0.0002 10.0,00015 10,000 < 0 0006 <18.8305 < 5,5005 +0.0009 < 0.0005 9.07 0.0005 < 0.0003 <.0.000¹ - 0.0007 1,0005 0.000 <0.000 < 17 20015 < 0.0005 < 0.0005 - 10005 D.1 : 0,0005 Pars-1,2-Dickorariistean 0.0100 970.000 i i × 0 (0005 < 0.000bs 1,2-Dahlenquegene 1,1-Dichlemproprae D.005 N/I 50,0005 0.0105 5 D 0005 1.6.0005 <0.000 <0.0009 < 0.0005 CORV 1,0005 0,000 \$ 0.002 <0 mits <0.0005 < 0.000 < 0.0016 0.0005 2-Districtoproperty 0.0005 6.010025 it itsay ~在1006 <01005 ST0.0003 <0.0002 1-Trablemproprise NE < 0.0005 < 0.0005 0.0.00105 CEONIS <0.001 < 0.000 10.0025 0.0005 is-1 %-10 chloroproper 000047 11/06019 < 0.0003 < 0.0005 <0.0005 4.0.0005 <0.0015 < 0.00025 < 0.0015 211 (0.01) -201 Distances (MUK) 0(0) 40,01 4891 50.QL ~7.01 <0.01

Notes

Shappes malyard by TestAmerica Laboratories, Int. of Scientifich, General

0.15'2

nil

Bulli views the cattyle exceeded interativy reporting littles.

Water Quality Memoral Levils are the Mesonchusette Maximum Contantinual Level (MMCL, 2016) unless efficience antelli ²¹⁰ Ware Omity Standard Levelence the Manuelments Denking Water Childdines developed by the Office of Research and Davidopower

n.él

0.0503

¹⁰ Xylen: Staniked Iso of the Total Xylene.

¹⁴ Water Quality Standard likes in for 1,3 decidos propere (i.e., ito sum of the 1,3 distingue property synthesis, i-still during region). ngl. = (dilugranis po Liter

05,61

0.00000

10,01

-0.0105

«hol

-10005

NE-Not Pstablished

Mellyl 2-performe (MBK)

dia nellan

+ Les That

-min

0.0005

101/1022

Frepand ID - ABC Checked fire UVe

192624

900L

17/1915

n 1956 bil Long Terri Manikain; Well am philo 55% mit Hawn Care Segional Water Sergie Chamasana, Macipus, 536

Sector.

Regar 3648 81.53474

Table 1-3 Explosive Compounds – EPA Method SW8350 (mg/L) Station Screens at Sentry Wells 2018 Sampling Results Upper Cape Regional Water Supply

Sample (1)	Water Quality Standard	Laboratory Reporting	(1-15-	(548	C\38	t-48	(2.55	-6-65	C-75
Sample Date	Level ^(h) (mg/L)	Limit (mmL)	05/33/2018	09/23/2018	05/24/2018	08:54:00 8	05725/2018	(15/23;2018	05/24/2018
2.6-Ditentine-4-mitreterhizes;	NE	0.0003	< 3,860%	<0.0305	< 6.0005	<0.0005	< 0.0603	≤ 0.3005	>= 0.0005
2,1-Diamino-6-nitretolucue	NE	0.00025	< 0.00025	< 0.00025	<6.00025	< 0.00025	< 3.00003	<0.00025	<0.00025
HMA	NH	0.00025	< 9.00025	< 0.00023	<0.00025	< 0.00025	~0.00025	< 0.00025	< 0.00025
RDX	NB	0.00025	0.00043	<0.00025	<0.00025	0,00027	< 0.60023	< 0.00025	< 6.00025
Pierie adid	NP.	0.00025	< 0.00025	< 0.00025	<0.00025	<0.60025	*0.00025	< 0.00025	<0.00025
1.3.5-Trimmonditzeac	NE	0.00025	< 0.00025	< 0.00025	≥ 0.60925	<0.00025	< 8,00025	< 0.00025	< 0.00023
1,3-Dini robenzene	NB	0.00025	< 0.00025	< 0.00025	<0.00025	< 0.00025	~0,00035	< 0.08025	< 0.00025
Nipobenzene	37	0.00025	< 0.00025	< 0.00025	< 0.00025	<0.00025	-50.00025	<0.00025	<0.00025
Tenel	NB	0.09025	< 0.00035	< 0.00023	< 0.00925	×10.00025	~ 0.00025	< 0.00025	< 0.00325
Nitroglycerin	NB	0,005	< 0.005	< 0.005	< 0,005	<0.005	<0.002	4.0.005	< 0.5835
2,4,6-Trinitrotulogne	VB.	0.009025	< 0.00025	<0.0002∃	<0.00025	<0.00025	<0.00035	< 0.08825	<0.000325
4-Amino-2.6-dicitrotociane	NE	0.00025	< 0.00625	< 0.00025	<0.99925	<0.00025	< 0,00025	< 0.00025	< 0.00023
2-Amir.o-4,6-diminates are	NB	0.00025	< 0.00023	< 0,00023	< 0.00025	<0.00025	<0.00025	< 0.800725	< 0.06325
2,6-Dinitrotolisene	\E.	0.00025	< 0.00025	< 0.00025	< 0.00025	<0.00025		< 3.06035	<0.00025
2.4 Dimitratolisene	NE	0.00025	< 0.00025	< 0.00025	< 0.09925	< 0,00025	< 0,00025	< 9,00024	<0.00925
B-Nitrotoluena	NE	0,00025	< 8.00023	< 0,00025	<0,00025	~5.0.00925	< 6 00025	< 3.00025	<0.06025
2-Nitrotoluene	NE	0.03025	< 8.00025	< 0.00025	< 0.00035	< 0.00025	<0.00025	< 0.00025	< 0.00825
4-Nincolliene	NE	0.00025	<8.00025	< 0.100225	< 0.00025	< 0,00(125	< 0,00025	< 0.00025	< 9.09025
PETN	NE	0.91	< 0.01	< 0.01	< 0.01	< 0.01	<0.01	<0.02	< 0.01

Notest

Samples analyzed by TestAmerica Laboratories, Inc. of South Burlington, Vermont

13 Water Quality Steedard Loods are the Massacrustets, Maximum Contaminant Level (MMCL, 2016) or less otherwise noted.

NE - Not Established

mget = Milligneins par Dieze

Propared Dy: ABC Checkod By: OW

17006-20 Long Tens Monitoring Well Sampling Status Upper Carls Regional Water Supply Cooperative Machine Ma

1545-451

s = Less Than

August 2018 2012/2006

Watermark

Tuble 1-4 Perchlorate – EPA Method 314.0 and EDB – EPA Method 504.1 (mg/L) Shallow Screens at Sentry Wells 2018 Sampling Results Upper Cape Regional Water Supply

Watermark

Sample III	Water Quality Standard	Laboratory Reporting	C-18	C-25	0.38	C45	0358	£-68	6.78	
Sample Date	Level ⁽¹⁾ (mg/L)	Limit (mg/L)	05/13/2018	05/23/2018	05/34/2018	05/24/2018	05/29/2018	0572972018	05/34/2018	
Perchlorate	0,062	0.0005	~10.0003	< 0.0003	< 0.0003	< 0.0005	<0,0003	< 9.0003	< 0.0003	
1,2-Dibromorthane (EDB)	0.00002	0.00007	< 0.00032	< 0.00002	< 6.00002	< 0.00002	< 0.00002	< 1.00002	< 0.00002	

Notes:

Perchlecate energyzed by Chemserve Environmental Laboratory of Milford, New Hampshire,

EDB englyzed by TestAmerics Laboratories, Inc. of Savanta's, Georgia,

(1) Water Quality Standard Lovels are the Massnermant's Maximum Contentionant Lovel (MMCL, 2016), unless otherwise noted.

mgdL = Mittligrams par Litter

<= Less Then

Prepared By: APC Unecked By: OW

1306 C0 Long Term Manifolds Well Sampling Services Upper Care Regional Water Sapping Cooperative, Waterport, MA Fale L.F.

Argine 2017 Wildheite

ATTACHMENT B Chain of Custody Forms, Low Flow Data – Field Results, 2018 Sampling Event

1

TestAmerica Savannah SIZ LaRoche Ovenue	Explo	sives	Shippe	d To	hain	of	Cust	ody R	ecord to TA	-23	3509		TestAmerico
Savannah, 64 31464 Phone: 912.354.7858 Fax:	(Perc Regi	intor at inatory Pr	e an o ogram:	lyzed	- Inve	Cha s E	HORA	loser of	-	-			TestAmerica Laboratorias, Inc.
Cileni Contact	Project k	Annanger: (Diaf Wa	stohal	len	Sile	Contact	time Ca	anari I	Date: 512	3118	-CDm	OCC Nor 1
Contrary None Watermark	TellFaxe	Machinest	Phalenthi	Strent .	Low as	Lob	Contact:	leated Co	Mer	Carrier: 72	HARLING.	tat	V I of 1 COCs
Account 115 Calport Street	_	Analysia	Tumaroun	d Time	140	П		TTT	-	9		TT	Sempler, MA + AN
100 918-452-9696	CA.B	NINE DAYS	M.W.	REACHE DAY	rs.		0-	0.0	- 3	1 A	4	1.1	For Lab Use Only:
*** 978-453-9988	1 1	of the second	Particle Street	-		1	22	- 3	1 4	24	A.	11	Waken Client
mest Name: UCAWS - 2018			Lung.	4 Day	5	종법	10-	03	4	54	×.		ran semicanit:
TBCC, Cape Cod, MA	- P		I cays	~ ~ ~		동물	-	11.2	80	1.5	22		Sold / SDG Min :
05 W17-10540C01	2	-	1 day	-	_	L R	12	613	a E	1.5	00		
Rennis Hantili-stice	Sample	Sample	Sample Type N=Colex		Ød	Nand So	Pice-	Sadi	Rech (ES	2 Kelas	EDB		
0.0-0 0.00	- Oute	FIDER	0.014	Mairiz	Gent.	EA				-		11	Sample Spad Fe Haller
04.0-9012	5 23 18	0835	G	WB		- N	3	3	1	al		11	Perchlorate is Field
TB_052318	5 33 12	0100	MA	We		NW	6	111	111				Filtered
TB-052318	5 2312	0700	NIA	WO		NN	TT		T		3		
C1-S. 2018	Slashs	105	G	WG		115	3	3	1	2		-	
35-5 adl8	5)434.8	1200	0	wer-	-	1	-	2	11	01			
CG-5-2018	Slashs	1335	G	WC.	-	YN	1	2	1	5		11	
27-5.2018	5124118	0830	G	WG		Y	3	2	12	5	111	1	
14-5. 2018	Sloule	1015	C	an C		Yw	3	2	1	7		++	
3-5-2018	5 24 10	1210	G	WG		N	3	3	1	2			
			-				++			+++	+++		All Sameles co Ho C. 1220
			-		-			III					the subscription of the
Norvation David: 1= ics, 2= HCh 3= H2904; 44H4	OUT DENDOH: 0	= Other 1	4,0,5	100.11	6	11	271	F la T	1 Det	1 de	10		
r any complex from a faced EPA transitious Wasto? I minimum Section 1 the last is to dispose of the sample	Neese List any E	PA Unsta	Codes for t	ho samp	la in the	San	nple Disp	esal (A te	e may be a	osessed If	semples are:	rataine	d longer than 1 month)
San Internation - San Inter	t leise	5.	Utions	M			Return to	Chert	18.0	and the face	Date	in fa	Marten
eclel InstructionalQC Requirements & Comments:	** Perchi	orate"	To Chee	SESTE	2 + 4	1.00	End	ships &	ikoned 4	TA TA	NT (SA	6	with The S tan Alt II
Held [IP EDB is detected in any s	ample, cal	PMt	discus	5 anul	reina	Tele	Bionk)	allen .	- 1 P.	Set	HA FL.	(SOLIZOTA MARCHINE)
Supportly Sents Integet / Mas No	Oustady Se	ne Ma.	_			100	Ci	clar Temp.	(*D) 0540	1	Confet	1 100	Thenr ID No.:
Michoel E. augustina)	Company.	nerk	5	Date Tit	153	Fait	A Desta	Hana		Gamp Al.	ano:	track	Date Time 5/2018 1553.0
inquished by:	Campany			Carse'l'arr	MAC .	Rec	chied by:	1:200	~	Comp	env.	avas	Date/Time:
Argulated by:	Concerty		-	DaloTin	8:	Rec	eked in L	appreciary b	y:	Dom	276	-	lists/Three
the second s									c.,		1		The second

	CHAIN	OF CUS	TODY	FORM		ENVIRO 8 Jan Seb	TEC-	LABS, INC.	Client: V	latermark Environment
Proj. No.	Project	Name:	Upo Wat	er Cape Regiona er Supply - 20	d 1/8	Sandvilch, (508)888-6	MA 0	2563 906-339-6460	Address: *	owell, HA OIS54
Michael	August	miak, A	Lex N	UNES		FAX (508)8	388-64	AS	Phone: 9	/8 / 52 9396 X 345 Q 13 .c1 -99 8 \$
Lan III 🕈	Dala	Time Com	() Crist	Sample	location	container Pres.			Analisis De	132 1100
1-180930A	5 23 18	0835	X	Ca-S_aois		1×50 ate	150	CH. Alkelink	Turblelite	Rested
5	503/8	10(5	X	C1-5-2018		1×502.9.	494	th Oto Law	TI C	apec Conductance
<u> </u>	5 43/18	1200	X	C5-5-2018		1.54.3	1000	atter and some	Autorophy 3	Par Coordinance
0	5 33(18	1535	X	CG-5,2018		12500-1860	48	pH, Steelining	In biding Sp	es Conductoree
			F		_		-		_	
		-	-				1	PH Metho	6 39450	0 H-B/150.1
			-				1.1	Pilkalinite	1 Total Cal	0. 5H2320 B
		-	+			-	-	last bidety	512130	6/180-1
						-		Specific?	and att not	512510 6
	1			-				TAT-21	Days	
-						Ľ.				
Seling listers: Muley E Question 5/23 2			Date/Time 5[25] 12 1/200	Reczined:	walley		Raliquisiqué:	Deterrine	RC022vert:	
Relinquished:	wineputshed: CI 5 Datis Time fore			Received:	· · ·	-	Relinguistice:	Berts/Tana		

-

-

-

	CHAIN	OF CUS	TODY	FORM	Jun	ENVIRO 8 Jan Seb	TECH	LABS, INC.	Client:	Watermark Environmental	
Proj. No.	Project	Name:	Upp Wad	er Capo Regions er Sueply - 2	11 1218	Sendwich, MA 02853 (808)858-6460/1-800-339-545			Address: 2108 Washington Street		
Sampler: Michael	Auquist	yniak, Al	ex N	1735 1735		FAX (508)	888-54	48 CRW5	Phonet: 978 452 9895 X 344 213		
LsbiD#	bID# Date Time Comp Grab Sample location		container	Pres.		Analysis Re	hunsteri				
KUGGA A	5/34/18	0530	X	C7-5-2012		17.580 - 84	14°C	pH. Aikalinity.	Turblelity.	Spec Conductories	
ß	5 314 18	1015	X	C4-5_2013		INTO H	CHOC.	PH Alkalinity	Tubeday	Save C. A.	
e.	5/31/18	1210	X	<u>C3-5_2018</u>		1×500.8	2492	2H Alkaliaity	Terbidity	Spec Conductance	
								PH Method Alkalinitu Turbidity Segoifica	SHYS (Total Co SM2130	00 H-B 150,1 (20) SH2330 B 0 B 1180-1 12 SH2510 B	
	-				-	-		रहा	- 21 De	35	
	1						1				
Rallinquished:	.3 Ja	(Providence		Date(Times 5 291/5 1620	mathred:	10-		Pailipolished:	DateTime	Ressived;	
Retinquished:		1,	117	Date/Time	Received:		-	Relinguished:	Date/Timo	Robeined:	

Sample ID: Pump Star: Sample Col	<u>C.1-S.</u> Time: <u>0915</u> lection Time:	2018 5 1015	_	Wat	erm	ark				
Well (D: Well Depil Static Was	<u>C1-5</u>	15	0 bgs. 1 6.05 A	ToC.		Den. Well Disease Server Depth Sampler(s)	5 <u> 23 18</u> * ^{(d)-}	2"	10 (50' 5	inches 1951 Fort belev gaule Riex Nurvee
Height of $T = \frac{12}{T}$ $T = \frac{12}{T}$	~-1 Veter in Well (T): ptb (ft) = Sau 5℃ - <u>10 (</u> <u>3-9(5</u> ft	waar Level (M) <u>4+05</u> waa	Volume: 2 X 0-04	Rx43.95×3	TIES XC	Low Flow Parging Devic Sampling Dev Parap Intake (Actual Parge)	se: lite: depth below TOC); Volume:	10 X M MP 10 P 151 050	MDS CANTElle	"Dedicated bladder Fump "Atton-lined tubing
Xing:	Teng. (*C) (= 3%)	ptf (SU) (±AJ)	Specific Condictionary Condictionary Condictionary Condictionary Condictionary	27.3 Litta Outline William	0 0.0. (aut) (<u>105</u> i(205)	0RP (mV) (4.10)	Flow Rate (relymin)	State of Value Lord	Color/ Clarity	AC
0915	11-75	6.06	_52	1-33	11-61	206-1	450	106-05	Clear	
0990	10.41	6.61	60	4.60	(1.62	204.7	450	106-05	Clear	
0985	9.90	5.94	60	3.43	11.63	203.6	450	106.05	clear	
0930	9.87	5.92	60	3.55	11-64	201.1	450	106-05	cical	
0935	9.90	5.84	60	2.97	11-66	203.9	450	106.05	clear	
0940	9.88	5.85	60	222	11-66	205.0	450	106.05	dear	
0945	9.89	5.94	60	2.41	11.65	203.7	450	106.05	Clear.	
0950	9.93	5.81	60	2.61	11-66	205.2	450	166.05	clear	
0955	9-87	5.77	59	2.92	11.56	213-7	456	106.05	clear	
1000	9.86	5.80	59	2.76	11-50	221-1	450	106.05	clear	
1005	9.87	5.81	60	2.08	11.49	223-4	450	106-05	clear	
1010	9.89	5.82	_60	1.79	11.47	224-9	450	106-05	clear	

Volume in gallens/fort for common monitoring well sizes 1-inch = 0.061, 2-inch = 0.162, 3-inch = 0.367, 4-inch = 0.652, 6-inch = 1.666

Sample ID:	Ca-S_	2018			INI	м	otes:			
Sample Colle	ection Time:	6835		Wat	erm	nark				
Well LD.: Well Depi Static Wa (From T.O	C2-5 868 6(ton-100)- NC- MC- MC- MC- MC- MC- MC- MC- MC- MC- M		<u>645.</u> .83 n	ítoc		Date Well Diamat Series Depti Sampler(s):	5]a3]ıı """-	a" nikeAs	n 130' i	Indus 295 Fectilitary produ Ricert, Millinez
Height of $\Gamma = \frac{de}{T}$ $T = \frac{L^2}{T}$	Weber in Webl (TL spech (2) - Sta 30 - LO 2, 1-17 ft 2, 1-17 ft	tle Water Level (fi) R•\$3 Weit	Volume: 2 x D.C	91×27.17	13.785	Low Flow Proging Dow Scorpfing De Puttip Intake () Actual Proge	ide: vice: (depth bolow TOC) Volume:	191 65	me Controller 0 M 05	Dedigated bladder pump test for lined two ing
Tine:	Temp. (°C) (1.3%)	카(SU) (朱凡()	Conductance Conduc	Tarktday (NTUs) (43055,735)	0.0. ing0 (±10% (1:05)	ORP (mV) (± 10)	Flow Rate [mildmin]	- Streie H water Latesi	<u>Color</u>	Contrages
0735	9.68	6.08	55	1.12	16-53	133.7	450	103.92		
0740	9.76	6-02	54	1.10	11-47	147.1	450	103 92	Clear	
0745	9-69	5-98	54	1-08	11.51	158.7	450	101.65	Clear	
0750	9.68	5.96	54	1.20	11-52	169.5	450	103.93	Clear C	
0755	9.75	5.95	54	1.03	11.51	177.10	450	102.23	rleat	
0800	9.74	5.95	54	1.07	11.47	193.6	450	102.83	clear	
0805	9.69	5.94	54	0-860	11.42	188.7	450	102.83	cheat	
0810	9.67	5.94	54	1.03	11-40	194.2	450	102.93	cleat	
0815	9.69	5.93	_ 54	0-80	11-38	199.7	450	102.93	cleat"	
0220	9-68	5.95	54	1.07	11-40	200.5	450	10283	Clear	
0825	9.67	5.95	54	0.99	11-42	200.2	450	102.83	clear	
0830	9-68	5.95	_54_	0.95	11.43	209.4	450	102.83	Clear	

Volume in gollens/Sec for common monitoring well size; 1-inch=0.041, 2-inch=0.163, 3-inch=0.367, 4-inch=0.652, 6-inch=1.468

Sample ID: Pump Start Sample Col	<u>C3-S_</u> Time: <u>1110</u> lection Time:	1210		Wat	erm	ark				
Well Days Well Days State Wes Offers T.D			3' 695- 1 -33'TOC 2			Date Well Dramet Soreen Depth Sampler(z):	5 a41(\$ ====================================	a" J33' Nillefug	w 183 by	indus 5- Perbowysale 8/0X NUMOS
Height all T = de T = 1 T = 1	Water in Well (7): nth (11) - San 83 - <u>103</u> 9 <u>. (87</u> n	ic Waler Level (10 -33 Well	Volume: 2 × 0.04	1×79.67×2	1.785 AC	Low Plass Purging Devi Sampling De Pamp Intelor Actual Parge	ec) Vice (depth below TOC): Volume:	10 X 10 10 X 10 15 X 65	ANDS	Dedicated blockspring Tablefon-lined tubing
Line:	Temp. (°C) (±3%)	pH (SU) (A (L1)	Specific Conductance C Hardinations ((45/Cim)	19-45 Luu Debidiy (STUA LUISALS)	C D.0. (mpl) (4 (05) i ⁷ >0.5)	ORP 00V) <u>(+ 119</u>	flow Raie (adfinin)	-stare Ai	S Colos' Clarity	Connents
1110	10.22	5.57	44	1.18	12.49	233.3	450	103.33	Clear	
1115	10.21	5.62	_51	1.21	12.26	257.0	450	103.33	Clear	
11:20	10-12	5.68	_51	1-06	12.13	368.0	450	103.33	clear	
1125	10.11	5.72	_51	1-18	12.01	274.1	450	103.33	Clear	
1130	10.01	5.73	_51	1.58	11.86	279.0	450	103.33	Clear	
1135	10.0%	5.76	_51	1.90	11.97	283.1	450	163.33	Cleas	
1140	10.10	5.79	_51	0.82	11-79	282.6	450	103.33	clear	
1145	10.02	5.83	51	0.93	11.74	275.0	450	163.33	cleat	
1150	9.99	5.86	5	1-29	11.66	217.0	450	103-33	dear	
ILSS_	1.94	5.88	51	1.24	11.80	278.3	_450_	103.33	clear"	
1200	0.99	5.84	51	1.01	11-18	980-1	450	103.33	Clear	
140.5	Tetar	_3-81	51	0.85	11-18	279.7	450	103-33	clear	
					-		_			

Volume in gallous/Ref for common combining well alors: 1-inch = 0.041, 2-mch = 0.163, 3-inch = 0.387, 4-inch = 0.662, 6-inch = 1.468

Sample ID:	<u>C4-5_2</u>	018		1	A					
Pump Start	Time: 0915	5		A lat		- de				
Sample Col	lection Time:)	1015		vvat	erm	ark				
Well 1D:	C4-5					Dec	5/24/18			
Well Dept	BGS	25	0 bas- #			Well Dinnek	z(d)=	2"		
Static Wat	a Lovel (WL) =	_13a	-29 TOC #			Scoren Depth Sampler(s)	h	1112 August	W 250 b	as. Fostpolowgrade
Height of T T= de T= 3 T= 1	Wate: in Well (T): ph (n) - Stati (50 - <u>133</u> 1 4 - 71 n	e Waer Level (4) 1-29 Well	Volume ax 0-041	x 111.71x3.7	85 AC	Low Flow Purging Devi Sampling Dev Pemp Intake of Actual Purge	te: foe: depth helow TOC): Volume:	YESX NO MPIO PU YAT 650	ng Castraller 3 HDS	Dedicated bladder prime Toplan-lined tubing
			Specific=73	1.07 Littus	D.0.					- ne
lim:	Temp. (°C) (4.3%)	0201Hq (1.0±1)	(45/2m)	Dichidity (NTUA) (MTUA)	01gm) 2015) (2.052)	ORP (mV) (4.10)	Flow Rate (m6/min)	Noter Level	Color/ Clarity	Comments
0915	10.53	6.54	47	7.35	13-26	209-1	450	132.29	Clean	
09.20	10-19	6.16	49	1.84	11-57	a13.1	450	132-29	clear	
0925	10.19	6.15	49	1.01	11.57	215.3	450	132.29	Clear	
0930	10-21	6.15	49	0.81	11.49	219.6	450	132-29	clear	
0935	10.16	6.16	47	0.85	11-46	222.6	450	132.29	Clear	
0940	10.20	6.15	49	1.01	11.43	224.1	450	132.29	clear	Contraction and Contraction
0945	10.32	6.16	49	0.92	11.37	225-6	450	132.29	Clear	
0950	10.26	6-17	49	0.98	11.34	328.6	450	132.29	Clear	
0955	10.30	6-18	49	1.02	11.33	329.4	450	132.29	cleat	
1000	10.36	6.18	49	1.07	11.29	230.6	450	132-29	dear	
1005	10.38	6.18	49	1.22	11.27	331.5	450	132.29	Clear	
1010	10.38	6-18	_49	1.25	1-25	232.4	450	132.29	Clear	

Volume in gallone/Set for common multipling well sizes: 1-inch = 0.041, 2-inch = 0.103, 3-inch = 0.363, 4-inch = 0.4632, 4-inch = 1.463

Sample ID:	<u>C5-S-</u> 2	2018		. 3	A					
Pump Start	Time: 1100			M/st	orm	arle				
Sample Col	lection Time:	200		vvat	enni	dik				
Well LD - Well Depth	<u>C5-5</u> 1668		0'bg5 n			Dat: ; —b Well Diamete Serven Depth	110)- 5 23 18	2"	10 180 bg	
$\begin{array}{c} (\text{loom IO} \\ \text{Heginary} \\ \Gamma^{-} & \text{de} \\ \tau^{-} & \underline{-1} \\ \Gamma^{-} & \underline{-1} \end{array}$	C) Neteria Well (T): pth (T) - Sec 80 - 136 3-53 R	ie Water Level (fl 6-47 We	Volume: 2 x 0.04	×43.53×3	1785 HC	Low Flow Purging Devi Sampling De Pump Intake Actual Purge	ee: rice: (depth below TOC); Volume:	Yex No MP10 f YSI 65	Umo Centrolly to HOS	Teflor-Lined Tubing
Tios:	Temp. (*C) (<u>4.3%)</u>	و(SU) التم (11-11-11)	Specific Conductance (457/cm)	Terbidiey (NTUS) (11)75 (129)	D.C. (mgt) (± 10%) (1:30,5)	ORP (Vn) (410)	How Rate (nl/nin)	Stretis_ water Leves]	<u>Color/</u> Clarity	Connens
1100	10.32	6.04	55	2.12	4.47	207.9	450	136.47	clear	
1105	10.65	6.03	54	1.33	11.42	214.4	450	136-47	clear	
1110	10-35	6.02	55	2-14	11.47	218-8	450	136.47	clear	
1115	10.36	6.01	55	1.05	11.49	221.7	450	136.47	clear	
1120	10.4L	6.01	55	0.96	11.46	222.1	450	136-47	Clear	
1125	10.43	601	_ 55	0.89	11-44	223.7	450	136.47	acar	
1130	10.43	6.00	55	0.86	11.91	124.3	450	136.47	dear	
1135	10.36	6.01	_55	0.97	11.42	227.1	450	136.47	clear	
1140	16.31	6.03	55	0.90	1142	228.3	450	134-47	cleaf	
1145	10.30	6.04	_55	0.69	11.40	229.6	450	136.47	clear	
1150	10-28	6.04	_55	0.92	16-42	231.7	450	136-47	clear"	
1155	10.27	6.04	_55	0.67	11.93	232-6	450	136-47	clear	

Volume in gallous/feet for examining well sizes: 1-inch = 0.041, 2-inch = 0.163, 3-meb = 0.367, 4-inch = 0.652, 6-inch = 1.468

Sample ID:	C6-5.2	018			A					Ø
Pump Start	line: 123	5		ALA		1				
Sample Coll	ection Time:	1335		vvat	erm	ark				
Well (D.: Well Depti Static Wete	 (1000 1000)=	_183 _143.	<u>bgs-</u> n 20'TOC n			Date <u>5</u> Well Districte Screen Depth Scruptor(s)]a3](8 ::::::::::::::::::::::::::::::::::::	2"	* 183' b	
Height of W T= dep T= _13 T= _3	/ster to Well (T); 6 (f) - Sur 63 - 14 9 - 20 ft	io Water Level (0) 3+20 Well	Volume: 2 x 0-041	×39.80 x 3.	185 (Barlicas)	Law Flow Purging Devis Sampling Dev Purup Intaise (Actual Purge 7	te: fee: /lepth balow TOC): Volume:	Yes & No MPW Ra YSI 65	mp Centra Ar 6 MDS - Ptars	Dedicated bladder public Tection-Lined Thibing
line	Temp. (*C) (<u>= (25)</u>	рН (SU) (±0,1)	Specific Charlesmage tentering (4.5/Cm)	Turbidity (NTUs) (1955-725)	D.O. (lag1) (<u>1 10%</u> i(24.5)	08,2 (mV) (±10)	Flow Rom <u>(inkinin)</u>	-sonie-LC mater Lawed	Color! Clarity	Communis
1235	10.73	6.30	54	15-0	11.95	217.4	450	143.20	SlightlyCle	andy
1240	10-34	5.92	54	8.36	11.37	224.1	450	143.20	Clear	
1245	10-30	5.92	55	5.83	11-41	230.4	450	143.20	clear	
1250	10-35	5.92	55	3.91	11.39	235-1	450	143.20	Clear	
1255	16.29	5.93	56	2.85	11.38	242.7	450	143.20	Clear	
1300	10.38	5.92	56	3.08	11-37	246.9	450	143.20	Clear	
1305	10.26	5.94	56	1-64	11-38	249.9	450	143.20	clear	
1310	10.32	5.96	56	1.43	11.37	253.0	450	143.20	clear	
1315	10.32	5.98	56	1-13	11.29	257.0	450	143.20	clear	
1326	10.31	6-01	_55	HI	11-26	259.6	450	143.20	Clear'	
1325	10.28	6.02	55	1.36	11.21	261.4	450	(43.90	dear	
1330	10.31	6.02	_55	1.68	11.23	262.9	450	143.20	clear	

Volume in gallons/feet for common monitoring well sizes: 1-inch = 0.041, 2-inch = 0.163, 3-inch = 0.367, 4-inch = 0.652, 6-inch = 1.468

Sample ID: Pump Start	<u>C7-S</u>	2018		10/-+	M					
Sample Coll	lection Time:	0830		vvat	erm	ark				
Well LD : Well Depth Static Wate (Prom T.O)	C7- BCC Hon HOC HC rLand (W1)- CJ	5a:	39'bys 11 21'TOC 11			Date Well Diemetr Scrom (Depth Sample (s):	5)24(18 million	2" 199" Willen ugu	to <u>239' bo</u> stynialc <u>, P</u>	inches B. Feelbelungmale NEX Nizzaez
Height of W T= dep T= 2 T= 2	Maer in Well (7): 194 (19) - Sta 199 - 15 197 - 15	ic Water Level (11) 7-21 Weil	Volume: 2X0-04	×81-79×3:	185 AC	Low Flow Purging Devi Sampling De Punja Intika * Actual Purge	ee vice: (depth below TOC): Votume:	10 X N 10 P10 P 10 P 10 P 10 P 10 P	SO HOS	E Dedicated Bladder pinn Telen-Lined Tubing
Time	Tong. (°C) (±3%)	pif((SU) (49,2)	Specific =	55.77 Link Turkély OVTUSÍ (*105.3281	4 D.C. (mgl) (4 10% (1:20.5)	CRP (mV) (±.10)	Flow Rate (inkaja)	station water [.cos]	Color Clane	Comments
0730	10-12	6.32	53	0-68	10-46	167.7	450	157-21	cleas	
0735	10.05	6-17	54	0.64	11.20	166.8	460	157-21	clear	
0740	10-04	6.12	_54	0.58	11-28	174.3	450	157-21	Clear	
0745	10-04	6-10	_54	0-61	11-31	185.1	450	157-21	Clear	
0750	10.03	6-10	_54	0.63	11.34	191.6	450	157.21	clear	
0755	16:04	6.10	_54	0.60	11.34	197.5	450	157-21	Clear	
0800	10.04	6.10	_57	0.79	11.33	201.8	450	157-21	clear	
0805	10-00	6.10	54	0-70	11-32	209.7	450	157-21	clear	
0810	10.01	6.10	54	3.68	11.33	211.1	450	157-21	clear	
0815	10.03	6.10	_54	0.68	11.36	212.7	450	157-al	Clear"	
0820	10.02	6-10		0-78	11-33	215.4	450	157-21	clear	
0825	10.01	6-10		4-75	11.32	216.1	450	157-21	clear	

Volume in gallons/feet Sir common menforing well sizes: 1-lack = 0.041, 2-inch = 0.163, 3-inch = 0.367, 4-inch = 0.682, 6-inch = 1.468

Impact Area Groundwater Study Program Upper Cape Water Supply Cooperative Sentry Well Sampling August 2018

ANALYTICAL REPORT

Job Number: 200-44619-1 SDG Number: 44619 Job Description: MMR Groundwater Monitoring

> For: WaterMark Environmental, Inc. 175 Cabot Street Lowell, MA 01854 Attention: David DiCesare

Approvent für releaser James Witketnam Barias Hispati Merlegia Biblio 3 28 AM

James W Madison, Senior Project Manager 30 Community Drive, South Burlington, VT, 05403 (802)660-1990 jim.madison@testamericainc.com 08/09/2018

cc: Aimee Comeau Mr. Jackson Kiker

The test results in this report relate only to sample(s) as received by the laboratory. These test results were derived under a quality system that adheres to the requirements of NELAC. Pursuant to NELAC, this report may not be produced in full without written approval from the laboratory

TestAmerica Laboratories, Inc. TestAmerica Burlington: 30 Community Drive, Suite 11, South Burlington, VT 05403 Tel (802) 680-1990: Fax (802) 680-1919: <u>www.testamericalinc.com</u>

Page 1 of 23

CASE NARRATIVE

Client: WaterMark Environmental, Inc.

Project: MMR Groundwater Monitoring

Report Number: 200-44619-1

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lawest possible reporting limit within the constraints of the method. In some cases, due to interference or analytes present at high concentrations, samples were diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

Calculations are performed before rounding to avoid round-off errors in calculated results.

All holding times were met and proper preservation noteo for the methods performed on these samples, unless otherwise detailed in the individual sections below.

RECEIPT

The samples were received on 35/03/2018, the samples arrived in good condition, properly preserved and on iter.

PERCHLORATES

Samples C-45_F18 and C-15_F18 were analyzed for Perchlorates in accordance with EPA SW-546 6850. The samples were analyzed on 08/06/2018.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page

EXPLOSIVES

Samples C-45_F18 and C-15_F18 were analyzed for explosives in accordance with 5330. The samples were prepared on 08/03/2018, and analyzed on 08/07/2018.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page

Page 2 of 23

METHOD SUMMARY

Client: WaterMark Environmental, Inc.			Lob Number, 200-44619-1 Sog Number, 44619		
Description	Lab Location	Method	Preparation Method		
Matrix: Water					
Nitroaromatics and Nitramines (HPLC) Solid Phase Extraction (Explosives)	TAL BUR TAL BUR	EPA 8330B	SW846 8330 Prep		
Perchlorate by LC/MS or LC/MS/MS	TAL BUR	EPA 6850			
Lab References:					
TAL BUR = TestAmerica Burrington					
Method References:					
EPA = US Environmental Protection Agency					
	with the second s	Lines Dates	and the second se		

SV948 = "Test Methods For Evaluating Solid Waste, Physica//Chemical Methods", Third Edition, November 1998 And Its Updates

TestAmerica Burlington

Page 3 of 23

METHOD / ANALYST SUMMARY

Client WaterMark Environmental Inc.

ob Number 200-44619-1 Sdg Number 44619

Method	Analyst	Analyst ID		
EPA 6850	Drumm, Eilis L.	ELD,		
EPA 83300	Drumm, Erik L	ELD		

TestAmerica Burlington

Page 4 of 23

SAMPLE SUMMARY

Client WaterMark Environmental, Inc.

Job Number 200-44619-1 Sdg Number 44619

Lab Sample ID	Client Sample ID	Client Matrix	Date/Time Sampled	Date/Time Received
200-44619 *	C-45 F18	Water	08/01/2018 1300	08/03/2018 1010
200-24619-2	C-15_F18	VVater	05/01/2016 1550	08/03/2015 010

TestAmerica Burlington

Page 5 of 23

SAMPLE RESULTS

TestAmerica Burlington

Page 6 of 23

					Analytical Data
Client WaterM	ark Environmental, inc			Job N	umber 200-44619 1 Sdg Number: 44619
Client Sample ID	C-45_F18				
Lab Sample ID: Client Matrix	200-44619-1 Water			Date Sar Date Rec	mpled: 08/01/2018 1300 ceived: 08/03/2018 1010
	83	30B Nitroaromatic	s and Nitramines	(HPLC)	
Analysis Method: Prep Method Dilution Analysis Date Prep Date:	83308 8330-Prep 1 0 08/07/2018 1522 08/03/2018 1545	Analysis Batch: Prep Batch	200-132606 260-132468	nstrument ID: nital Weight/Voluma: Final Weight/Volume njection Volume Result Type:	CH1488 500 mL 10 mL 750 uL SECONDARY
Surrogale		%Rec	Qua	liñer Acceptar	rae Lumits
1.2 Din trobenzen	ê.	105		83 19	

TestAmerica Burlington

Page 7 of 23

Client WaterMark Environmental, no.

200 44619 1

Water

Client Sample ID: C-4S_F18

Lab Sample ID: Olient Matrix Sdg Number: 44619

Job Number 200-44619 1

Date Sampled: 08/01/2016 1300 Date Received: 08/03/2016 1010

		8330B Nitroaromatic	s and Nitramine	s (HPLC)			
Analysis Method: Prep Method Dilution Analysis Date Prep Date.	63308 8330-Prep 1 0 08/07/2018 1608 08/03/2018 1545	Analysis Batch Prep Batch	200-132607 260-132468	nstrum nitral V Pinal W njectic Result	rent ID: Veighb/Volume: veight/Volume in Volume: Type:	CH1203 500 mL 10 mL 150 uL PRIMARY	
Analyte		Result ()	a/L) O	alifier	MDL	RL.	
26 demino 4 nitr	intoluene	0.20	L .		0.031	0.20	
HMX	Westman in	0.20	ü		0.025	0.20	
2.4 diamino 3 nitr	rotoluene	0.20	ũ		0.039	0.20	
RDX	a carta a contra con	0.20	ü		0.036	0.20	
246-Tranitrophen	Internet	0.20	ũ		0.020	0.20	
135-Innitrobenz	010	0.20	U	0 0.024		0.20	
1 3-Din trobenzen	TB	0.20	Ű	U E C		0.20	
Nitropenzone		0.20	U	U 0.060		0.20	
Tetry		0.20	U		0.054	0.20	
Nitroglycerin		4.00	U.		1.60	4.00	
246-Trinitrotolue	ine	0.20	U		0.027	0.20	
4 Amino-2 6 dmit	rotoluene	0.20	Q		C 015	0.20	
2-Ammo-4.6-dunit	rotoluene	0.20	U.		D 01-8	0.20	
2 6-Din troboluene	9	0.20	U		D 034	0.20	
2.4-Diritrotoluene	5	0.20	U		0.064	0.20	
o-Nitrotoluene	p-Nitrotoluene		0		D.051	0.20	
p-Nitrotoluene		0.20	4		2 053	0.20	
m-N trotoluene		0.20	U		0.053	0.20	
PETN		10.01	u		2.60	120	
Surrogate		%Rec	Q	ualifier	Acceptar	ree Limits	
1 2-Din trobenzer	ie .	104			83 - 119		

Page 8 of 23

Client WaterM	nt: WaterMark Environmental, no				Uob Number 200-44619 1 Sola Number: 44619			
Client Sample ID Lab Sample ID: Client Matrix	C-15_F18 200-44619-2 Water	Date Sampleo Date Receive					pled: 08/01/2018 1550 eived: 08/03/2018 1010	
-		8330B Nitr	oaromatics	and Nitra	mines (H	PLC)		
Analysis Method: Prep Method Dilution Analysis Date Prep Dato.	83308 8330-Prep 1 0 08/07/2018 1557 08/03/2013 1545	Analy Prep	sis Batch Batch	200-1326 200-1324	906 188	nstrument ID: nibal Weight/V Final Weight/V niection Volun Result Type:	olume. olume ne:	CH1485 500 mL 10 mL 750 ul SECONDARY
Analyte			Result (u	a/L/	Qualific	r MDL		RL
RDX		_	0.049	-	dp	0.038	7	0,20
Surrogate 1 2-Din trobenzen	e	-	%Rec 102	-	Qualifie	ri A 8	cceptars 3 - 119	æ L/mits (

TestAmerica Burlington

Page 9 of 23

Client WaterM	ark Environmental, inc.				7901	umber 200-44619 1 Sdg Number: 44619
Client Sample ID	C-15_F18					
l ab Sample ID: Olient Matrix	200-44619-7 Water				Date Sar Date Re	mpled: 08/01/2016 1550 ceived: 08/03/2016 1010
	83	OB Nitroaromatic	s and Nitram	tines (HI	PLC)	
Analysis Method:	83308	Analysis Batch	200-13260	7	instrument ID:	CH1203
Prep Method	8330-Prep	Prep Batch 200-132488		8	nibal Weight/Volume.	500 mL
Dilution*	10				Final Weight/Volume	10 mL
Analysis Date:	08/07/2018 1646				njection Volume:	150 JL
Prep Dalo.	08/03/2018 1545				Result Type:	FRIMARY
Analyte		Result (u	ig/L)	Qualifie	r MDL	RL
26-dismino-4-nitro	otoluene	0.20		u	0.031	0.20
HMX		0.20		U	0.025	0.20
2.4 diamino 3 nitro	otoluene	0.20		W	0.039	0.20
RDX		0.20	Up		0.036	0.20
24.6-Trinitrophen	ol	0.20		W.	0.020	0.20
135-Innitrobenzo	910	0.20	U		0 024	0.20
1 3-Din trobenzen	B	0.20		U.	019	0.20
Nitropenzone		0.20		U	0.060	0.20
Tetry:		0.20		U.	0.064	0.20
Nitroglycerin		4.00		U.	1.60	4.00
246-Trinitrotolue	he	0.20		U.	C 027	0.20
4 Amino-2.6 dinitr	otoluene	0.50		U.	£ 015	0.20
2-Ammo-4 6-dmitr	otoluene	0.20		U.	D 01 6	0.20
2 6-Din troboluene		0.20		U	D 034	0.20
2.4-Dinitrotoluene		0.20		U	0.064	0.20
eneulotorti//-c		0.20		U	D.051	0.20
p-Nitrotoluene		0.20		U.	2 053	0.20
m-N trotoluene		0.20		U.	0.023	0.20
PETN		12.0		u	2.60	12.0
Surrogate		%Rec		Qualific	Acceptar	eae Limits
1 2-Din trobenzen	0	103			83 - 119	

TestAmerica Burlington

Page 0 cf 23

Client WaterM	ark Environmental, ir	10		Uob Number 200-44619 1 Sdg Number: 44619			
Client Sample ID	C-45_F18						
l ab Sample ID: Client Matrix	200-44619-1 Water		Date Sa Date Re	e Sampled: 08/01/2018 1300 e Received: 08/03/2018 1010			
		6850 Perchlorate D	y LCIMS or I	LC/MS/MS			
Analysis Method:	6850 N/A	Analysis Batch Prep Batch	200-13255 N/A	6 Ir	strument ID: ab File ID:	LC30 P080	162 0619B12 d
Dilution : Analysis Date:	1 0 08/06/2018 1652			ir B	if al Weight/Volume: hal Weight/Volume	10	mL
Prep Dalo.	N/A			1 P	jection Volume:	50.)	uc.
Analyte		Result (ig/L)	Qualifier	MDL		RL
Perchlorate		0,018		d	0.012	1	0,20

TestAmerica Burlington

Page 1 of 23

Client WaterM	ark Environmental, ir	10			-72P1	vumber 200-44619 1 Sdg Number: 44619	
Client Sample ID	C-15_F18					a second a second	
I ab Sample ID: Client Matrix	200-44619-2 Water				Date Sampled: 08/01/2016 15/ Date Received: 08/03/2016 10/		
		6850 Perchlorate b	y LCIMS or I	LCIMSIM	s		
Analysis Method:	6850 N/A	Analysis Batch Pred Batch	200-13255 MA	6	nstrument ID: Lab File ID:	LC3062 P090019513.d	
Dilution : Analysis Clate:	1.0 08/06/2018 1707			1	nitial Weight/Volume Final Weight/Volume	10 mL	
Prep Dalo.	N/A			1	njection Volume:	50 UC	
Analyte		Result (J	ig/L)	Qualifier	MDL	RL	
Perchlorate		0,043		d	0.012	0,20	

TestAmerica Burlington

Page 2 of 23

DATA REPORTING QUALIFIERS

Client WaterMark Environmental, no.

Job Number 200-44619-1 Sdg Number: 44619

Lab Section	Qualifier	Description
I PLC/IC		
	ŭ	indicates the analyte was analyzed for but not detected.
	4	Result is less than the RL but greater then or equal to the MDL and the concentration is an approximate value.
	P =	The %RPD between the primary and confirmation column/detector is >40%. The lower value has been reported.
CMS.		
	U	indicates the analyte was analyzed for but not detected.
	L	Result is less than the RL out greater then or equal to the MDL and the concentration is an approximate value

TestAmerica Burlington

Page * 3 cf 23
QUALITY CONTROL RESULTS

TestAmerica Burlington

Page * 4 cf 23

Client WaterMark Environmental Inc.

ob Number 200-4461S-1 Sdg Number 44619

QC Association Summary

Lab Sample ID	Client Sample ID	Basis	Client Matrix	Method	Prop Batch
LCMS					
Analysis Batch: 200-1325	56				
LCS 200-132556/4	Lab Control Sample	T	Water	6850	
MB 200-132556/3	Method Blank	T	Water	6850	
200-44619-1	C-45 F18	т	Water	8850	
200-44819-2	C-15_F18	Ť	Water	6850	
Report Basis Total					
HPLC/IC					
Prep Batch: 200-132488					
CS 200-132488/2 A	Lab Control Sampl⊨	T	Water	8330-Prep	
MB 200-132488/1 A	Method Blank	Ŧ	Water	8330-Prep	
200-44619-1	C-45_F18	T	Water	8330-Prep	
200-44519-2	C-15_F18	T.	Water	8330-Prep	
Analysis Batch: 200-1326	06				
LCS 230-132488/2-A	Lab Control Sample	Ŧ	Water	B330E	200-132489
VIB 20C-132488/1-A	Vethod Blank	T	Water	8330E	200-132489
200 44619 1	C 45 F18	T	Water	8330B	200 132488
100-44619-2	C-15_F18	T.	Water	8330E	200-132488
Analysis Batch: 200-1326	07				
LCS 200-132488/2-/\	Lab Control Sample	1	Water .	8330B	200-132488
MB 200-132488/1-A	Viethod Blank	T	Water	8330E	200-132489
200-44619-1	C-45_F18	T	Water	8330E	220 132488
200-44619-2	C-15_F18	τ	Water	6330B	200-132485

Report Basis

T = Total

TestÁmerica Burlington

Job Number 200-44619 1 Sdg Number: 44619

Client: WaterMark Environmental, no.

Surrogate Recovery Report

8330B Nitroaromatics and Nitramines (HPLC)

Glient Matrix: Water

Làb Samole ID	Client Sample D	12DNB1 %Rec	12DNB2 %Rec
200-44619-1	C-45_F18	- 104	
200-44619-1	C-4S_F18		105
200 44619 3	C 15 F18	~03	
100-44619-2	G-15_F18		102
ME 200-132488/1-A		~104	
MB 200-132468/1-A			99
LCS 200-132488/2-A		114	
LCS 200-132488/2-A			100

Surrogate 12DNB = 1.2-Dimtrobenzene Acceptance Limits 83-119

TestAmerica Burlington

Page 6 cf 23

Client: WaterMark Environmental, hc.

Job Number 200-44619-1 Sdg Number 44619

Surrogate	% Rec	Acceptance Limits	
1 2 Dimitrobonzone	83 - 119		
Method Blank - Batch: 200-132488	Method: 8330B Preparation: 8330-Prep		
a second and the second second second		A A A A A A A A A A A A A A A A A A A	

Lab Samole ID. Client Matrix. Dilution: Analysis Date: Prep Date: Leach Date:	MB 200-132468/1-A Water 1.0 08/07/2018 1453 08/03/2018 1545 N/A	Analysis Batch. Prep Batch: Leech Batch: Units	200-132607 200-132485 N/A ug/L	Instrum Lab File Initial V Final W Injectio Column	iont ID. s ID Veght/Volume: /eight/Volume: n Volume: n D.	CH1208 S1861049.D S22 mL 12 mL 152 ul PRIMARY	
Analyte		Res	w/L	Que)	MDL	RL	
2.6-diamino-4-niti HMX 2.4-diamino-6-niti RDX 2.4.6-Trnitrophen 1.3.5-Trnitrophen 1.3.5-Trnitrophenzen Nitrosenzens Tetry Nitrosenzens Tetry Nitroslycenin 2.4.6-Trnitrotolue 4-Amino-2.6-diniti 2.6-Dinitrotoluene p-Nitrotoluene p-Nitrotoluene p-Nitrotoluene HETN	rotoluene rotoluene rol rene re rotoluene rotoluene e	0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21			0.031 0.025 0.039 0.036 0.020 0.024 0.019 0.050 0.054 1.60 0.054 0.055 0.015 0.055 0.015 0.054 0.051 0.053 0.053 0.053 0.053 0.053	0,20 0,20 0,20 0,20 0,20 0,20 0,20 0,20	
Ci manata		100	Det		Assestance Lin	aite.	
1 2-Din trobenzen	16.	1	0d		83 - 119	ons	

TestAmerica Burlington

Page * 7 cf 23

Client: WaterMark Environmental, hc.

Job Number 200-44619-1 Sdo Number 44619

Surrogate		% Rec		Acceptance Limits			
1 2-Din trobenzei	ne	1	100		B3-119		
Lab Control Sa	ample - Batch: 200-13	2488		Method: 8 Preparatio	330B on: 8330-Pr	ер	
Lap Samole ID Client Matris: Dilution: Analysis Date: Prep Date: Leach Date	LCS 200-132456/2-A Water 1.0 09/07/2018 1531 08/03/2018 1545 N/A	Analysis Batch Prep Batch: Leach Batch: Units	200-132607 200-132498 N/A ug/L	Instrument I Lab File ID Initial Weigh Final Weigh Injection Vo Column ID	D, G BVolume: C t/Volume: 1 Gume: 1	CH11208 31661050.D 305 mL 10 mL 150 uL PRIMARY	
Analyte		Spike Amount	Result	% Rec.	Lin-tit	Quar	
2.8-diamino-4-nil HMX 2.4-dismino-6-nit RDX 2.4,8- Timitrophe 1.3,5- Timitrophe 1.3,5- Timitrophe 1.3,5- Timitrophe 1.3,5- Timitrophe Nitroglycenin 2.4,8- Timitrophe 4-Amino-2,8- dimitrophe 2-Amino-4,8- dimitrophe	trotoluene trotoluene nol zens ne ene trotoluene trotoluene	4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00	5,381 3,651 3,191 3,724 3,828 3,654 3,654 3,654 3,738 3,794 3,078 87 97 3,722 4,021 3,917	84 91 80 93 96 91 95 77 110 93 101 98	72 - 13 85 - 13 88 - 13 88 - 13 88 - 13 88 - 13 75 - 12 75 - 12 85 - 13 84 - 12 74 - 12 74 - 12 76 - 12 79 - 13	22 25 20 20 25 20 25 20 25 20 25 26 77 23 25 25 20	
2,6-Dinitrotoluene 2,4-Dinitrotoluene piNitrotoluene		4.00 4.00 4.00	3.997 3.759 3.280 3.821	100 94 82 96	77 - *27 78 - *20 p 70 - 127		
m-Nitroto uses PETN		4.00 80.0	5.671 70.88	92 89	73 - 12 73 - 12	μ 15 μ 17	
Surrogate		96	Rec	Ap	ceptance Lim	TITE	
1 2-Din trobenzer	ns	3	14		83 - 119		

TestAmerica Burlington

Page 3 of 23

Client: WaterMark Environmental, nc.

Job Number 200-44619-1 Sdg Number 44619

Method Blank	- Batch: 200-132556			Method Prepara	: 6850 tion: N/A	
Lap Sample ID, Olient Matrix: Dilution: Analysis Date; Prep Date; Leach Date	MB 200-132556/3 Water 1.0 08/06/2018 1437 N/A N/A	Analysia Batch: Prep Batch: Leach Batch: Units	200-132556 N/A N/A N/A Ug/L	Instrume Lab File I Initial We Final We Injecton	nt ID, D ght/Volume ight/Volume Volume,	LC2062 P030618E03.d 10 mL 50 uL
Analyte		Res	ult-	Qual	MDL	RL
Perchlorate		3.20	1	U.	0.012	0.20

Lab Control Sample - Batch: 200-132556

Method: 6850 Preparation: N/A

Lao Samole ID. Client Matra. Dillition: Analysis Date: Prep Date: Leach Date	LCS 200-132556/4 Water 1.0 08/08/2018 1452 N/A N/A	Analysis Balch. Prep Balch. Leach Batch: Units	200-132556 N/A N/A ug/L	Instrument II Lab File ID. Initial Weigh Final Weigh Injecton Vei	D, t/Volume: t/Volume: ume:	LC3062 P080618 10 mL 50 uL	3E04 (I
Amelyte		Spike Amount.	Result	% Rec.	Limit	1.1	tion)
Perchlorate		0,200	0,194	97	80 -	20	1

Page *9 cf 23

TODY RECORD		omeau@watamarkenv.com	co.net	Doutere cop	NI 2001.0 250.0	
CHAIN-OF-CUS	Defiver Data to:	Aimes Conteau: Almea.o	Jackson Kiker. Jikken@ei	A Solo Solo Solo Solo Solo Solo Solo Sol	C44A C44A C44A C44A C44A C44A C44A C44A	
		60-1990	ulte 11; South Burlington, VT 08403	A Constant of the second of th	We have been and the second se	
COC # WM-SPM	story: Test America, Inc	of contact: Jim Medison (\$32) 6	30 Community Dr. S	Second Se	A X X X X X X X X X X X X X X X X X X X	ed by Laboratory: (Signatura, D
1854 78) 453-4968	Labora	Point .	andus	equest, Byrme, RG= Ovelletto, Uido	Time Annuput	Menegy
5 Cabot Street, Lowell, MA 0 ce: (978) 452-9595, Fax: (97	NAE MMR OSMULTM	North SPM (12404-06-00180	21001-1	iad. "H"= Hold Analysis Re Blee Augustyniak, T9= Tim on Ogungbile, KO= Kelsay onovan, CG= Catherine G k 2018 SPM Fall',	Watrix Date Wus 811118 1 I unaround Time: 14 D	tello -
Watermark 175	oject Name: CEA	oject Number: J2 h	LAS	onments: "C"= Composit "* Analyze C" Aimee Comeau, MA= M as Garrison, SO= Semso a Ethan Pack, JD= Jeff D MRS Event ID: "Watermark oweek TAT PLEASE.	Semple D 4 4 6 6 6 6 6 6 1 C45 F18 4 4 1 C45 F18 6 6 6 6 1 7 7 7 1 C45 F18 8 8 1 C45 F18 1 C45	applieg base / Carrier

((12404-06-00180)) Point of con Hold Analysis Request, styrilek, TB= Tim Byrne, RG= bile, KO= Keleav Divelters	D WINSHIM	HAIN-UP-CUS IOU	T KELUKU
alysis Requeet, TB= Tim Byrne, RG= s Kalend Onellette	Test America, Iric Del tact: Jim Madison (802) 880-1990	lifver Data to: nes Comesu: Arnee.comeaust	Bwatermertkenv corn
nalysis Request, ; TB= Tim Byme, RG= b= Kalaav Dueltette	30 Community Dr. Suite 11: South Burlington, VT 05403 Jac	okson Kiker, Jidker@ecc.net	
atherine Guido		Nama	
Sample		Location	Samp Depth (it bos)
116 15GO TA		9	Type Top-Bottom
ime: 14 Days Equipment:	Deticated bladder pump; Low-flow method (LF)		
2 /10 153.0 25.3	(Sugneture) Date Time CodeCot	ntainentPreservedve	
10 001 2 100	12 2 2 2 2 12 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,	1 liter ambers @ 4.C 250 mL plastic @ 4.C	
0. 6 417	8		
Received by	Laboratory: (Sugnature, Date, Traja & Condition)		-

Login Sample Receipt Checklist

Client WaterMark Environmental, Inc		Jab Number 200 44619 1 SDG Number 44619
Login Number: 44619 List Number: 1 Creator: Nye, Elizabeth A		List Source: TestAmerica Burlington
Question	Answer	Comment
Radioactivity wasn't checked or $\ll {\ll} l$ background as measured by a survey meter	True	Lab does not accept radioactive samples.
The cooler's custody seal, if present is intac.	True	Seal present with no number.
Sample custody seals, if present are intact	True	The set a second state of the set
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable	True	
Cooler Temperature is recorded.	True	0.2, 0.2º C
COC is present.	True	
COC is filled out in ink and legible	True	
COC is filled out with all pertinent information.	True	
Is the Field Samplers hame present on COC?	True	
There are no discrepancies between the containers received and the COC	True	
Samples are received within Holding 1 me (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	true	
Containers are not broken or leaking	True	
Sample collection cate/times are provided	True	
Appropriate sample containers are used.	True	
Sample battles are completely filled	WA.	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace of bubble is <8mm (1/4").	True	
Multiphasic samples are not present	True	
Samples to not require splitting or compositiong	Tide	
Residual Chlorine Checked.	NDA:	

Page 23 cf 23

Impact Area Groundwater Study Program

Upper Cape Regional Water Supply Cooperative Water Supply Well Sampling

August 2018

ANALYTICAL REPORT

Job Number: 200-44708-1 SDG Number: 44708 Job Description: MMR Groundwater Monitoring

> For: WaterMark Environmental, Inc. 175 Cabot Street Lowell, MA 01854 Attention: David DiCesare

Approved for release James Withdown Serier Project Menapo 3 (10:27) N.0.26 AM

James W Madison, Senior Project Manager 30 Community Drive, South Burlington, VT, 05403 (802)660-1990 jim.madison@testamericainc.com 08/10/2018

cc: Aimee Comeau Mr. Jackson Kiker

The test results in this report relate only to sample(s) as received by the laboratory. These test results were derived under a quality system that adheres to the requirements of NELAC. Pursuant to NELAC, this report may not be produced in full without written approval from the laboratory

TestAmerica Laboratories, Inc. TestAmerica Burlington: 30 Community Drive, Suite 11, South Burlington, VT 05403 Tel (802) 680-1990. Fax (802) 680-1919. <u>www.testamericalinc.com</u>

Page 1 of 28

CASE NARRATIVE

Client: WaterMark Environmental, Inc.

Project: MMR Groundwater Monitoring

Report Number: 200-44708-1

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the memory duality control is samples, due to interference or analytes present at high concentrations, samples were diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

Calculations are performed before rounding to avoid round-off errors in calculated results.

All holding times were met and proper preservation noted for the methods performed on these samples, unless otherwise detailed in the individual sections below:

RECEIPT

The samples were received on 35/06/2018, the samples arrived in good condition, properly preserved and on ice.

PERCHLORATES

Samples WS-1_F18, WS-2_F18 and WS-3_F18 were analyzed for Perchlorates in accordance with EFA SW-B46 6860. The samples were analyzed on 08/08/2018.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page

EXPLOSIVES

Samples WS-1_F18, WS-2_F18 and WS-3_F18 were analyzed for explosives in accordance with 8330. The samples were prepared on 08/08/2018 and analyzed on 08/08/2019

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page

Page 2 of 28

METHOD SUMMARY

Client WaterMark Environmental, Inc.			Lob Number, 200-44708-1 Sog Number, 44708
Description	Lab Location	Method	Preparation Method
Matrix: Water			
Nitrogromatics and Nitramines (HPLC) Solid Phase Extraction (Explosives)	TAL BUR TAL BUR	EPA 8380B	SW846 8330 Prep
Perchlorate by LC/MS or LC/MS/MS	TAL BUR	EPA 6850	
Lab References:			
TAL BUR = TestAmerica Burington			
Method References:			
EPA = US Environmental Protection Agency			
and the second sec	and the second s	a construction of the second	and the second second second

SW848 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1926 And Its Updates

TestAmerica Burlington

Page 3 of 28

METHOD / ANALYST SUMMARY

Client WaterMark Environmental Inc.

Lob Number 200-44708-1 Sdg Number 44708

Method	Analyst	Analyst ID
EPA 6850	Dramm, Eilis L.	ELD,
EPA 83300	Drumm, Erik L	ELD

TestAmerica Burlington

Page 4 of 28

SAMPLE SUMMARY

Client WaterMark Environmental nc.

Job Number 200-44708-1 Sdg Number 44708

Lab Sample ID	Client Sample ID	Client Matrix	Date/Time Sampled	Date/Time Received
200-44708	WS-1_F18	Water	08/06/2018 1015	08/08/2018 1415
200-44708-2	WS-2 F18	Weter	05/06/2018 0950	08/08/2018 1415
200-44708-3	WS-3_F18	Water-	08/08/2018 0915	08/08/2018 1415

TestAmerica Burlington

Page 5 of 28

SAMPLE RESULTS

TestAmerica Burlington

Page 6 of 28

Sdg Number 44708

CF1208

Job Number 200-44708-1 Client WaterMark Environmental, no. Client Sample ID: WS-1_F18 Date Sampled: 08/08/2018 1015 Lab Sample ID: 200 44708 1 Date Received: 08/08/2018 1415 Client Matrix Water 8330B Nitroaromatics and Nitramines (HPLC) Analysis Batch 200-132713 Analysis Method: 83308 instrument ID: nibal Weight/Volume: 500 mL 8330-Prep Prep Batch Prep Method 200 132683 Final Weight/Volume 0 mL Dilution* 10

Ahalysis Date:	08/09/2018 1152		njed	tion Volume:	150 ul	
Ptep Lialo.	00/00/2010 1000		real	nt Abe	PRIMARY	
Analyte		Result (ug/L)	Qualifier	MDL	RL	
26 diemino 4 ni	trotoluene	0.20	u	0.031	0.20	
HMX		0.20	U U	0.025	0.20	
2.4 diamino 3 ni	trotoluene	0.20	U.	0.039	0.20	
RDX		0.20	U	0.036	0.20	
246-Trinitrophe	enal	0.20	U.	0.020	0.20	
13.5-Inntroben	12010	0.20	U	0 024	0.20	
1 3-Din trobenze	пе	0.20	U.	E 015	0.20	
Nitropenzene		0.20	U	0.060	0.20	
Tetry!		0.20	U	0.054	0.20	
Nitroglycerin		4.00	U.	1.60	4.00	
24.6-Trinitrotolu	ene	0.20	4	C 027	0.20	
4 Amino 2.6 din	itrotaluene	0.20	Q.	C 015	0.20	
2-Ammo-4.6-din	itrotoluene	0.20	U.	D 018	0.20	
2 6-Din troboluer	10	0.20	0	D 034	0.20	
2.4-Diritrotoluen	ID-	0.20	U	0.064	0.20	
p-Nitrotoluene		0.20	0	D.051	0.20	
p-Nitrotoluene		0.20	U.	2 053	0.20	
m-N trotoluene		0.20	U.	0.053	0.20	
PETN		100	u	2.60	120	
Surrogate		%Rec	Qualifier	Accep	tance Limits	
1 2-Din trobenze	ne	124	- warding day	83 - 11	ម្វ	

TestAmerica Burlington

Page 7 of 28

					Analytical Data
Client WaterM	ark Environmental, inc	8		Job	vumber 200-44708-1 Sdg Number 44708
Client Sample ID	WS-1_F18				
Lab Sample ID: Client Matrix	200-44708-1 Water			Date Sa Date Re	mpled: 08/06/2016 1015 ceived: 08/08/2016 1415
-	£	330B Nitroaromatic	s and Nitramines	(HPLC)	
Analysis Method: Prep Method Dilution Analysis Date Prep Date.	83508 8330-Prep 1 0 08/09/2018 1345 08/08/2018 1550	Analysis Batch Prep Batch	200-13271-4 200 132683	nstrument ID: nitial Weight/Volume Final Weight/Volume njection Volume Result Type:	CF1485 500 mL 10 mL 750 JL SECONDARY
Surrogale		%Rec	Qu	alifier Accepta	rce Limits
1.2 Din tropenzen	Êl .	97		83 19	

TestAmerica Burlington

Page 8 of 28

Client WaterMark Environmental, no.

200 44708 2

Water

Client Sample ID: WS-2_F18

Lab Sample ID: Olient Matrix Job Number 200-44708-1 Solg Number 44708

Date Sampled: 08/06/2016 0950 Date Received: 08/08/2016 1415

		8330B Nitroaromatics	s and Nitramines	(HPLC)		
Analysis Method: Prep Method Dilution Analysis Date Prep Date.	83303 8330-Prep 1.0 08/09/2018 1229 08/08/2018 1530	Analysis Batch: Prep Batch	200-132713 200 132683	instrument ID: nibal Weight/Volum Final Weight/Volum njection Volume Result Type:	CH1208 e. 500 mL e. 10 mL 150 JL PRIMARY	
Analyte		Result (a/L) Qua	alifier MDL	RL	
26 demino 4 nit	rotoluene	0.20	u u	0.061	0.20	
HMX	- Walden stores	0.20	ü	0.025	0.20	
2.4 diamino 6 nit	rotoluene	0.20	U	0.039	0.20	
RDX		0.20	ü	0.036	0.20	
246-Trinitropher	nal	0.20	ũ	0.020	0.20	
135-Innitrobena	2010	0.20	U	0 024	0.20	
1 3-Din trobenzer	TB	0.20	U	E 015	0.20	
Nitropenzone		0.20	U	0.090	0.20	
Tetry		0.20	U	0.064	0.20	
Nitroglycerin		4.00	U.	1.60	4.00	
246-Trinitrotolue	ane	0.20	U	C 027	0.20	
4 Amino-26 dinit	rotoluene	0.20	U.	0.015	0.20	
2-Ammo-4.6-dmit	rotoluene	0.20	U.	0.018	0.20	
2 6-Din trotoluene	3	0.20	U	D 034	0.20	
2.4-Diri trotoluena	5	0.20	U	0.064	0.20	
c-Nitrotoluene		0.20	0	D.051	0.20	
p-Nitrotoluene		0.20	Ц.	2 053	0.20	
m-Ntrotoluene		0.20	U	0.033	0.20	
PETN		10.0	U	2.60	120	
Surrogate		%Rec.	Qui	alifier Accep	tance Limits	
1 2-Din trobenzer	ne	156		83 - 1	ê.	

Page 9 of 28

					Analytical Data
Client WaterM	ark Environmental, inc			JODIN	umber 200-44708-1 Sdg Number 44708
Client Sample ID	WS-2_F18				
I ab Sample ID: Client Matrix	200-44706-2 Water			Date Sar Date Re	mpled: 08/08/2018 8950 ceived: 08/08/2018 1415
-	8	330B Nitroaromatic	s and Nitramines	(HPLC)	
Analysis Method: Prep Method Dilution Analysis Date Prep Dalp.	83308 8330-Prep 1 0 08/08/2018 1420 08/08/2018 1530	Analysis Batch Prep Batch	200-13271-4 200 132663	Instrument ID: Initial Weight/Volume Final Weight/Volume Njection Volume Result Type	CH1483 500 mL 10 mL 750 JI SECONDARY
Surrogale		%Rec	Qua	alifier Acceptar	tae Lumits
1.2 Din tropenzen	éi	102		83 19	1

Page 10 cf 28

Client WaterM	ark Environmental, inc				70P V	umber 200-44708-1 Sda Number -44708
Client Sample ID	WS-3_F18					
Lab Sample ID: Olient Matrix*	200-44708-3 Water				Date Sar Date Re	mpled: 08/03/2016 0915 ceived: 08/08/2016 1415
	83	30B Nitroaromatic	s and Nitra	amines (H	PLC)	
Analysis Method: Prep Method Dilution Analysis Date Prep Date.	83308 8332-Prep 1 0 08/09/2018 1422 08/08/2018 1530	Analysis Batch Prep Batch	200-132 200-132	713 683	nstrument ID: nitel Weight/Volume Final Weight/Volume njection Volume ResultType	CH1208 500 mL 10 mL 160 JL FRIMARY
Analyte		Result (a/L)	Qualifie	m MDL	RL
HMX 2.4 diamino 3 nitr RDX 2.4.6 Trinitrophen 1.3.5 Trinitrophen 1.3.5 Trinitrophenzen Nitroglycerin 2.4.8 Trinitrotolue 4. Amino-2.6 dinitr 2.4.9 Trinitrotoluene 2.4.0 Initrotoluene 2.4.0 Initrotoluene p-Nitrotoluene p-Nitrotoluene	otoluene en e re totoluene otoluene	0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20			D 025 D 039 D 039 D 020 D 020 D 024 D 024 D 054 D 054 D 054 D 054 D 054 D 054 D 055 D 054	0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20
m-N trotoluene PETN		0.20 10 0		ŭ	2.60 2.60	0.20
Surrogate 1.2 Diruktorentien	**	%Rec 105		Qualific	Acceptar	ree Limits

TestAmerica Burlington

Page 1 cf 28

					Analytical Data
Client WaterM	ark Environmental, inc				Job Number 200-44708-1 Sdg Number 44708
Client Sample ID Lab Sample ID: Client Matrix-	WS-3_F18 200-44708-3 Water			D D	ate Sampled: 08/06/2016 0915 ate Received: 08/08/2016 1415
	83	30B Nitroaromatic	s and Nitramine	5 (HPLC)	
Analysis Method: Prep Method Dilution Analysis Date Prep Dalo.	83308 8330-Prep 1 0 08/08/2018 1805 08/08/2018 1833	Analysis Batch Prep Batch	200-13271-1 260 132663	nstrument ID: nitial Weight/Vi Final Weight/Vi niection Volum Result Type	CF1485 plume: 500 mL plume: 10 mL e: 750 ul SECONDARY
Surrogate 1 2 Din tropenzen	é.	%Rec 100	Qu	alifier Ai Bi	cceptar to Limits 3- 119

TestAmerica Burlington

Page 2 cf 28

Client: WaterM	ark Environmental, in	P)			-70P I	Sdg Number	44708-1
Client Sample ID	WS-1_F18						
Lab Sample ID: Client Matrix	200-44708-1 Water				Date Sa Date Re	mpled: 08/06/2 ceived: 08/08/2	016 1015 018 1415
		6850 Perchlorate b	y LCIMS or	LC/MS/	IS		_
Analysis Method:	6850 N/A	Analysis Batch Prep Batch	200-1327: N/A	29	instrument ID: Lab File ID:	LC3062 P080918B05	id.
Dilution : Analysis Date:	1 0 08/09/2018 1339				nit al Weight/Volume Final Weight/Volume	10 mL	
Prep Date.	N/A				njection Volume:	50. ML	
Analyte		Result (u	g/L)	Qualifie	n MDL	RL	
Perchlorate		0,20		Ω.	0.012	0,20	

TestAmerica Burlington

Page * 3 cf 28

Client WaterM	ark Environmental, in	2			-70P.V	umber 200-44708-1 Sdg Number 44708
Client Sample ID	WS-2_F18					
Lab Sample ID: Olient Matrix	200-44708-2 Water				Date Sa Date Re	mpled: 08/03/2018 8950 ceived: 08/08/2018 1415
		6850 Perchlorate b	y LCMS or	LC/MS/M	s	
Analysis Method:	6850 N/A	Analysis Batch Prep Batch	200-13272 N/A	99 1	nstrument ID: Lab File (D:	LC3062 P060918508.d
Dilution : Analysis Date:	1 0 08/09/2018 1424			1	nit al Weight/Volume: Final Weight/Volume	10 mL
Prep Date.	N/A				njection Volume:	50 UL
Analyte		Result (u	ig/L)	Qualifier	MDL	SL.
Perchlorate		0,20	2.1.	U	0.012	0,20

TestAmerica Burlington

Page 4 of 28

Client WaterM	ark Environmental, in	ic.			70P V	umb Sdg	er 200-44708-1 Number 44708
Client Sample ID	WS-3_F18						
I ab Sample ID: Client Matrix	200-44708-3 Water				Date Sa Date Re	mpled ceived	: 08/08/2018 0915 5: 08/08/2018 1415
		6850 Perchlorate b	y LCMS or	LC/MS/N	s		
Analysis Method:	6850 N/A	Analysis Batch Prep Batch	200-13272 N/A	Ş	nstrument ID: Lab File (D:	LC3 P68	1062 1091 8609 d
Dilution : Analysis Clate	1 0 08/09/2018 1439				nit al Weight/Volume: Final Weight/Volume	10	mL
Prep Date.	N/A				njection Volume:	50.	AL
Analyte		Result (c	ig/L)	Qualifie	MDL		8L
Perchlorate		0,076	2.1.	d	S10.0		0,20

TestAmerica Burlington

Page 5 cf 28

DATA REPORTING QUALIFIERS

Client WaterMark Environmental, no.

Job-Number 200-44708-1 Sdg Number: 44708

Lab Section	Qualifier	Description
I PLC/IC		
	ŭ	indicates the analyte was analyzed for but not detected.
	n =	The %RPD between the primary and confirmation column/defector is >40%. The lower value has been reported.
LGMS		
	0.	indicates the analyte was analyzed for but not detected.
	0	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Page 16 of 28

QUALITY CONTROL RESULTS

TestAmerica Burlington

Page 17 cf 28

Client WaterMark Environmental Inc.

ob Number 200-44708-1 Sdg Number 44708

QC Association Summary

Lab Sample ID	Client Sample ID	Basis	Client Matrix	Wethod	Prop Batch
LCMS					
Analysis Batch: 200-132	729				
LCS 200-132729/4	Lab Control Sample	T	Water	6850	
MB 200-132729/3	Method Blank	Ť	Water	6850	
200-44708-1	WS-T -18	T	Water	8850	
20D-44708-1MS	Matrix Spike	Ť	Water	6850	
200-44708-1MSD	Matrix Spike Duplicato	T	Water	6850	
200-44708-2	WB-2 F18	T	Water	6850	
200-44708-3	WS-9_F18	τ	Wate/	6850	
Donal Basis					
T = Total					
HPLC/IC					
Prep Batch: 200-132683	bi and an and a second s				
LCS 200-132683/2-A	Lab Control Sample	Г	Water	8330-Prep	
MB 200-132683/1-A	Method Blank	1	Water	8330-Prep	
200-44708-1	W/S-1 F18	Ť	Wator	6330-Ptep	
200-44708-2	WS-2 F18	T	Water	8330-Prep	
200-44708-2MS	Matrix Spike	T	Water	8330-Prep	
200-44708-2MSD	Watnix Spike Duplicate	T	Wate!	8330-Prep	
200 44708-3	WS 3_F18	τ	Wate/	8330-Prep	
Analysis Batch: 200-132	713				
LCS 200-132683/2-A	Lab Control Sample	· · · ·	Water	8330B	200-132683
MB 200-132683/1-A	Method Blank	Т	Watur	8330E	200-132883
200-44708-1	WS-1_F18	T	Water	8330B	200-132683
200 44708 2	WS-2_F18	Т	Water	8330B	200 132683
200-44708-2MS	Matrix Spike	T	Water	BSSOE	200-132683
200 44708-2MSE	Matrix Spike Duplicate	т	Wate/	8330B	200-132683
200-44708-3	WS-3_F16	T	Water	8330B	200-132883
Analysis Batch:200-132	714			02.32	
LCS 200-132683/2-A	Lab Control Sample	U	Wator	8330B	200-132683
MB 200-132683/1-A	Method Blank	т	yVater	8330B	200-132683
200-44708-1	WS-1_F18	T	Wate/	8330B	200-132683
200-44708-2	WS-2_F18	Т	(Vate/	8330E	200-132683
20D-44708-2MS	Matrix Spike	T	Wate/	833DB	200-132683
200-44708-2MSD	Matrix Spike Duplicate	T	Water	83308	200-132683
200-44708-3	WS-3_F18	T	yvaler.	0330B	200-132683

Report Basis

Total ⊂

TestÁmerica Burlington

Page 3 cf 28

Job Number 200-44708-1 Sdg Number: 44708

Client WaterMark Environmental, no.

Surrogate Recovery Report

8330B Nitroaromatics and Nitramines (HPLC)

Client Matrix: Water

Lab Samole ID	Client Sample D	12DNB1 %Rec	12DNB2 %Rec
200-44758-1	W9-1_518	~ D^	
200-44708-1	WS-118		97
200 44708-2	WS 2 F18	~D6	
200-44758-2	WS-2_=18		102
200-44708-3	WS-3_718	~05	
200-44708-3	WS-3_FIB		100
ME 200-132683/1-//		DFr	
MB 200-132683/1-A			103
LCS 200-132683/2-A		15	
LCS 200-132683/2-A			103
200-44708-2 MS	WS-2_FIB MS	117	
200-44708-2 MS	WS-2_F15 MS		99
200-44708-2 MSD	WS-2 F18 MSD	-1a	
200-44708-2 MSD	WS-2_F18 MSD		100

Surrogate 12DNB = 1,2-Dindrobenzene Acceptance Limits 83-119

TestAmerica Burlington

Page 9 cf 28

Client WaterMark Environmental, nc.

Job Number 200-44708-1 Sdg Number 44708

Method Blank - Batch: 200-132683 Method: 8330B Preparation: 8330-Prep Las Sample ID. MB 200-132653/1-A Analysis Batch: 200-132713 Instrument ID. CH-205 Prep Batch: Lab File ID Client Matrix: Water 200-132693 31724002.D Dil.tion: 1.0 Leach Batch NJA Initial Weight/Volume 500 mL Final Weight/Volume: 10 mL Injector Volume: 150 ul Analysis Date: 08/09/2018 1037 Units ug/L Pren Date 08/08/2018 1530

Leach Date N/A		Colu	ann D	PRIMARY	
Analyze	Result	Qual	MDL	RL	
2 B-d amino-4-nitrotoluene	3.20	U	0.031	0.20	_
HMX	5.20	U	0.025	0.20	
2 4-diamino-8-niliotoluene	3.20	U	0.039	0.20	
RDX	0.20	11	0.036	0.20	
2.4.B-Trinitrophenal	120	u	0.020	0.20	
1.3.5-Trinitrobenzene	3.20	U	0.024	0.20	
1 B Din trobenzene	n 20	11	0.019	0.20	
Nitropenzene	0 20	u	0.050	0.20	
Tetry	5.20	0	0.054	0.20	
Nitroglyceim	4.00	U	1.60	4.00	
2.4.6-Trinitrotoluene	5.20	Ū.	0.027	0.20	
4-Amino-2.6-dinitrotoluene	0.20	D.	0.015	0.20	
2-Artino-4.6-dinitrotoluerie	0.20	U	0.016	0.20	
2.6 Dinitrotoluene	1.20	0	0.034	0.20	
2 4 Din trotoluene	3 20	U	0.054	0.20	
o Nitrotoluene	0.20	11	0.061	0.20	
p-Nitrotoluene	0.20	U	0.053	0.20	
m-Narotoluene	0.20	0	0.053	0.20	
PETN	100	Q.	2.60	100	
Surrogate	% Rec		Acceptance Lin	nits	
1 2-Dinitropanzane	110		83 - 119		
Surrogate	% Rec		Acceptance Lin	nits	
1 2-Din trobenzene	103		83 - 119		

Page 20 cf 28

Client WaterMark Environmental, nc.

Job Number 200-44708-1 Sdg Number 44708

Lab Control Sa	ample - Batch: 200-13	2683		Method: 8330B Preparation: 8330-	Prep
Lao Samole ID.	LCS 200-132663/2-A	Analysis Batch:	200-132713	Instrument ID.	CH1209
Client Matrix:	Waten	Prep Batch:	200-132693	Lab File IC.	31724003.D
Dilution:	1.0	Leach Batch:	N/A	Initial Weight/Volume:	500 mL
Analysis Date:	08/09/2018 1114	Units	ug/L	Final Weight/Volume	10 mL

Prep Date: 08/08/2018 1553 Leach Date: N/A			Column D	ume: 150 u PRIM	RY
Analyte	Spike Amount	Result	% Rec.	Limit	Qua
2.5-diamino-4-nitrotoluene	4.00	3.357	B 4	72- 22	
HMX	4.00	3.683	92	85-135	
4 diamino 6 hitrotoluene	4.00	3.288	.81	88 122	
RDX .	4,00	3.672	92	68 - 130	
4,5-Trinitrophenol	4.00	3,845	96	80 - 020	
3.5-Trinitrobunzene	4.00	3.655	511	73 - 125	
3-Dintrobenzene	4.00	3.711	93	78 - 120	
vitrobenzene	4,00	3.730	93	65 - 134	
Tetryl	4.00	3 252	81	64 - 128	1
litroglycerin	80.0	80.19	100	74 127	
4,5-Trinitrotaluenc	4.00	3,686	92	71 - 123	
-Amino-2,6-dinitrotoluene	4.00	3,986	103	76 - 125	
-Amina-4, 6-dinitratoluana	4.00	3.857	36	79 - 120	
.6-Dinitrotoluene	4.00	3.911	98	77-127	
4 Dinitroto Liene	4.00	3.752	94	78 - 120	a construction of the second s
Nitratoluene	4 CO	3 287	82	70 127	
Abatolugne	4.00	3.779	514	71 - 12/	D.
n-Nitrotoluens	4.00	3,753	94	73 - 125	12
TETN	80.0	78.99	96	73 - 127	
Dirogate	% R	ec	Ao	septance Limita	
2-Din trobenzene	12	5		83 - 110	
Surrogate	% R	ec	Áp	ceptance Limits	
2-Din trobenzene	10	Ê.		83 - 119	

Page 21 cf 28

Job Number 200-44708-1

Sdg Number: 44708

Client WaterMark Environmental, nc.

Matrix Spike/ Matrix Spike Duplicate Recovery Report - Batch: 200-132683

Method: 8330B Preparation: 8330-Prep

MS Lab Sample	ID 200-44708-2	Ana	lysis Batch:	200-132713	Instrum	ent ID.	CH1 206	
Client Matrix:	Water	Pre	p Batch:	200-132683	Lab File	IC:	31724006	.D
Dilution:	1.0	Lea	ch Batch:	N/A	Initial W	e ght/Volume:	500 mL	
Analysis Date:	08/09/2018 1307				Final W	eight/Volume:	10 mL	
Prep Date:	08/08/2018 1530				Injector	Volume:	150 uL	
Leach Date	NIA				Column	D.	PRIMARY	
MSO Lao Samp	e ID: 200-44708-2.	Ans	lysis Batch:	200-132713	Instrume	ent ID:	CH1208	-
Client Matrix:	Water	Pre	p Batch:	200-132683	Lab File	ID:	31724007	D
Dilution:	1.0	Lea	ich Batch	NA	Initial W	eight/Volume	500 mL	
Analysis Date:	08/09/2018 1344				Final W	eight Volume:	10 mL	
Prep Date:	08/08/2018 1550				Injector	Volume:	150 UL	
Leach Date	NKA				Column	D.	PRIMARY	
		96	Rec.		-			
Analyte		MS	MSD	Limit	SOD	RPD Lime	MS Qual	MSO Qual
2 6-d amino-4-nit	tratoluene	85	87	72-122	3	20		
HMX		92	95	65 135	з	20		
2.4-diamino-6-nil	trotoluere	80	82	68-122	-2	20		
RDX		93	95	68 130	3	20		
24.6-Trinitrophe	nal	89	93	80 - 120	-4	20		
135 Trinitroben	zene	81	95	73 - 125	4	20		
1.3-Din trobenze	ne	32	96	78-120	4	20		
Nitropenzene		96	99	65 - 134	3	20		
Tetry		79	83	64-128	5	20	12	F.
Nitroglycerin		105	104	74 - 127	0	20		
246 Trinitrotolu	ene	91	94	71 *23	3	20		
4-Amino-2 6-dini	trotaluene	98	100	76-125	2	20		
2 Amino 4 6 dini	trotoluene	96	98	79 - * 20	2	20		
2 6 Din trotoluen	e	99	102	77 - 127	2	20		
2 4 Din frotoluen	e	81	94	78-120	3	20	iX.	li.
o Nitrotoluene		84	85	70 - 127	1	20		
p-Nitrotoluene		94	98	71 - 127	4	20	px.	l)
m-Ntrotoluene		94	101	73 : 125	7	20	p	p:
PETN		90	95	73 - 127	rB.	20	1.	
Surrogate			WS % Rec	MSD	% Rec	Aco	eptanse Lin	ats
1 2-Dimitrobenze	ne		117	118		8	8 - 119	
Surrogate			MS % Rac	MSD	% Rec	Acc	eptarpe L m	its
1 2-Din trobenza	ne		99	100		5	5-119	

TestAmerica Burlington

Page 22 cf 28

Client: WaterMark Environmental, nc.

Job Number 200-44708-1 Sdg Number 44708

Method Blank - Batch: 200-132729 Method: 6850 Preparation: N/A Lap Sample ID: MB 200-132729/3 Analysis Batch: 200-132729 Instrument ID. LC2062

Client Matric: Dilution: Analysis Date: Prep Date: Leach Date	Water 1.0 08/09/2018 1309 N/A N/A	Prep Batch: Leach Batch: Units	N/A N/A Ug/L	Lab File Initial W Final W Injector	iC eight/Volume eight/Volume i Volume.	P080918E03 10 mL 50 UL	.d
Analyze		Re	ault-	Qual	MDL	RL	
Perchlorate		.0.2	0	U.	0.012	0.20	-

Lab Control Sample - Batch: 200-132729

Method: 6850 Preparation: N/A

Lap Samole ID, Client Matrix, DilLtion: Analysis Date: Prep Date: Leach Date	LCS 200-132/29/4 Water 1.0 08/09/2018 1324 N/A N/A	whalysis Balch. Prep Balch. Leach Batch: Units	200-132/29 N/A N/A ug/L	Instrument ID. Lab File ID. Initial Weight/V Final Weight/V Injection Veium	alume: olume: ie:	LC3062 P080918 10 mL 50 uL	804 (I
Analyte		Spike Amount.	Result	% Rec.	Limit		QUE
		0 100	0.486	29-2	80.22	sin	11

Matrix Spike/

Matrix Spike Duplicate Recovery Report - Batch: 200-132729

Method: 6850 Preparation: N/A

MS Lab Sample Dirution Dilution Analysis Date: Prep Date: Leach Date:	D: 200-44708-1 Wate: 1.0 09/09/2018 1354 N/A N/A	Ana Proj Leav	lysis Batch.) Batch: ch Batch.	200-132729 N/A N/A	Instrume Lab File Initial W Final Wo Injection	ent ID: ID: eightVolume, eightVolume, Volume:	LC3062 P080918E 10 mL 50 iuL	105.d
MSD Lab Sampa Chent Matrix. Dilution. Analysis Date: Prep Date: Leach Date.	s ID. 200-44708-1 Water 1.0 05/09/2018 1409 N/A N/A	Ana Proj Lear	lysis Batch. 9 Batch. ch Betch:	200-132729 NVA NVA	Instrume Lab File Initial W Final We Injection	nt ID: ID: aghtVolume: sightVolume: Volume:	LC3062 P0809186 10 mL 50 vL	207.d
Analyte		MS	Rec. MSD	Lonit	RPD	RPC Lime	MS Qual	MSC Qual
Perchlorate		102	107	80 - 20	5	15		

TestAmerica Burlington

Page 23 cf 28

FROM (978) 452-9696, Fax: (978) ENAE MMR OGM/LTM	3) 453-0582	Laboratory: Test America, Inc		Deliver Deta to:	MELONI
2404-06-00180)		Point of contact: Jim Madipon (802) 660-1990 Ship to: 30 Community Dr. Suite 11: Soul	dh Burlington, VT 05403	Aimee Comeau: Aimee comeang Jackson Kiker: Jikkengecc.net	Pastermarkenv.com
H"= Hold Analysis Req uguetynisk, TB= TIm E ungbilo, an, CG= Cstherine Gui 8 \$PM Fair'.	puest, Byrrie, RG# Ido	Entropy of the second of the s	Construction of the constr	E Contractor	
	Semply	2 3 4		Location	Samp Depth (1 bp
WE 8 6118 10	AM SIG	XX		WS-I	N1 150.0 175
WG 8/0/8 00	150 MA	XX		2-SM	NI BUTA9
0 819 8 DM	ANS MA	xx		W8-3	N1 190.0 215
Tumaround Time: 2 De		Equipment: Extraction well port (WF) of Water Supp	ply pumping station		
Date	Time	Rejeatived by: (Signature) Day	the Code	ContainenPreservative	
2/10/18 Val 18	179	Con Bon	1 1/2 15/5 2	2* 1 litter ambens @ 4*C 1* 250 mL plastic @ 4*C	
- 8-2 -	Pro	\$			
	Ē	Representation (Signature, Date, Time & BAR 12 BAR 318 12 12 12 12 12 12 12 12 12 12 12 12 12	S (415)		

Jab Number 200 44708 1

Login Sample Receipt Checklist

Client WaterMark Environmental, Inc.

		SDG Number 44796
Login Number: 44708 List Number: 1 Creator: Nye, Elizabeth A		List Source: TestAmerica Burlington
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter</td <td>True</td> <td>Lab does not accept radioactive samples.</td>	True	Lab does not accept radioactive samples.
The cooler's custody seal, if present is intact.	True	Seal present with no number,
Sample custody seals, if present are intact	True	The second s
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable	True	
Cooler Temperature is recorded.	True	2.5, 1.3, 0.6, 1.0 51, 11, 0.9, 0.8 Degrees C
COC is present.	True	
COC is filled out in ink and legible	True	
COC is filled out with all pertinent information.	True	
Is the Field Samplers hame present on COC?	True	
There are no discrepancies between the containers received and the COC	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True.	
Containers are not broken or leaking	True	
Sample collection cate/times are provided	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled	W/A	
Sample Preservator Verified.	True	
there is sufficient vol. for all requested analyses, including requested MS/MSDs	Tiue	
Containers requiring zero headspace have no headspace of bubble is <6mm (1/4").	Frue	
Multiphasic samples are not present	True	
Samples to not require splitting or compositiong	True	
Residual Chlorine Checked.	NDA.	

Page 28 of 28

102nd Intelligence Wing Water Quality Report

ETHER T

Annual Water Quality Report

Reporting Year 2017

Presented by Otis Air National Guard Base

PWS ID #: MA4096001

Continued Commitment

Us

We are once again proud to present our annual water quality report covering all testing performed between January 1 and December 31, 2017. Over the year, we have dedicated ourselves to producing dinking water that meets all state and federal standards. We continually strive to adopt new methods for delivering the best-quality drinking water to you. As new challenges to drinking water safety emerge, we remain vigilant in meeting the goals of source water protection, water conservation, and community education while continuing to serve the needs of all our water users. Please remember that we are always available to assist you should you ever have any ouestions or concerns about your water.

00

10

Brown, Red, Orange, or Yellow Water

Brown red, orange, or yellow water is usually caused by rust. The different colors can be attributed to varying chemical oxidation states of the iron (rust) and by varying concentrations of the rust in the water. There are two major sources that can cause water to be rusty:

•The water mains, or

•The water pipes in your building.

Rusty water occurs from sediment or rust from the inside walls of the water mains. The rust can be disturbed and temporarily suspended in water with unusual water flows from water main breaks or maintenance or by flushing of a hydrant. *This discolored water is not a health threat.*

When the water is discolored if is recommended to either not wash laundry or to use a rust stain remover or regular detergent but not chlorine bleach as it will react with the iron to form a permanent stain.

The other major cause of brown, red, crange or yellow water is rusty water pipes in your building. <u>Water that is being discolored by rusty</u> <u>pipes is not a health hazard</u>.

How is My Water Treated and Purified?

Our drinking water is treated with potassium carbonate, socium (luonde, and sod um hypochlorite. The water in this geographic area is naturally acidic, with an average pH of 5.9 (7.0 is neutral). Acidic water can be harmful to the distribution system. Potassium carbonate is used to buffer the water to as close to a neutral pH as possible. At the request of the U.S. Coast Guard, which is the owner and operator of the family housing area, sodium fluonde is added to the water. This compound has proven effective in strengthening teeth. Finally, sodium hypochlorite is used to disinfect the water supply by killing bacteria.

Where Does My Water Come From?

Our drinking water supply is provided entirely by groundwater. J-Well (4096001-01G), which is located on Herbert Road, is our primary pumping station. We are also connected to the Upper Cape Regional Water Supply Cooperative. The Cooperative's water sources come from three wells located in the northeastern corner of Joint Base Cape Cod. On average, we provide up to 300,000 gallons of high-quality water every day. All of the Otis public water supply is drawn from the Sagamore Lens of the Cape Cod single-source aquifer. This lens runs from the Cape Cod Canal eastward into the town of Yarmouth. To learn more about our watershed on the Internet, go to the U.S. EPA's Surf Your Watershed Web site at http://cfpub.epa.gov/surf/locate/index.cfm.

0

U

Tap Water vs. Bottled Water

Us

I hanks in part to aggressive marketing, the bottled water industry has successfully convinced us all that water purchased in bottles is a healthier alternative to tap water. However, according to a four-year study conducted by the Natural Resources Defense Council, bottled water is not necessarily cleaner or safer than most tap water. In fact, about **25 percent of bottled water is actually just bottled tap water** (40 percent according to government estimates)

The Food and Drug Administration is responsible for regulating bottled water, but these rules allow for less rigorous testing and purity standards than those required by the U.S. EPA for community tap water. For instance, the high mineral content of some bottled waters makes them unsuitable for babies and young children. Further, the FDA completely exempts bottled water that's packaged and sold within the same state, which accounts for about **70 percent** of all bottled water sold in the United States.

People spend **10,000 times** more per gallon for bottled water than they typically do for tap water. If you get your recommended eight glasses a day from bottled water, you could spend up to **\$1,400 annually**. The same amount of tap water would cost about 73 cents. Even if you installed a filter device on your tap, your annual expenditure would be far less than what you'd pay for bottled water.

For a detailed discussion on the NRDC study results, check out their Web site at www.nrdc.org/water/drinking/gbw.esp

The Benefits of Fluoridation

Iuoride is a naturally occurring element in many water supplies in trace amounts. In our system, the fluoride level is adjusted to an optimal level averaging one part per million (ppm) to improve oral health in children. At this level, it is safe, odorless, colorless, and tasteless. There are over 3.9 million people in 140 Massachusetts water systems and 184 million people in the U.S. who receive the health and economic benefits of fluoridation.

QUESTIONS7

For more information about this report, or for any questions relating to your drinking water, please call the water supply superintendent, Mr. Richard Souza, at (508) 968-4102,

Source Water Assessment and Protection

SWAP Explanation

0

The Source Water Assessment and Protection (SWAP) program, established under the federal Safe Drinking Water Act, requires every state to inventory land uses within the recharge areas of all public water supply sources; to assess the susceptibility of drinking water sources to contamination from these land uses; and to publicize the results to provide support for improved protection.

What is my system's ranking?

A susceptibility ranking of high was assigned to this system due to the absence hydrogeological barriers (i.e., clay) that can prevent contaminant migration.

Where can I see the SWAP report?

Information on obtaining the complete SWAP report is available by contacting the water supply superintendent at (508) 968-4102. The report is also available online at http://mass.gov/eea/docs/dep/water/drinking/swap/ sero/4096001.pdf

Potential Sources of Contamination

Being a military facility, Ots ANG Base, has the octential of having fuel, chemicals, and other material(s) as possible sources of contamination.

Cross Connection Control and Backflow Prevention

Otis ANGB makes every effort to ensure that the water delivered to your home and business is clean, safe,

and free of contamination. Our staff works very hard to protect the quality of the water delivered to our customers throughout the entire treatment and distribution system. But what happens when the water reaches your home or business? There is still a need to protect the water quality from contamination caused by a cross-connection.

What is a Cross-Connection?

A cross-connection occurs whenever the drinking water supply is or could be in contact with potential sources of pollution or contamination. Cross-connections exist in piping arrangements or equipment that allow the drinking water to come in contact with non-potable liquids, solids, or gases (hazardous to humans) in event of a backflow.

What is Backflow?

Backflow is the undesired reverse of the water flow in the drinking water distribution lines. This backward flow of water can occur when the pressure created by equipment or a system, such as a boiler or air-conditioning, is higher than the water pressure inside the water distribution line (backpressure), or when the pressure in the distribution line drops due to routine occurrences such as water main breaks or heavy water demand causing the water to flow backward inside the water distribution system (backsiphonage). Backflow is a problem that many water consumers are unaware of. And every water

customer has a responsibility to help prevent them.

What Can I Do to Help Prevent a Cross Connection?

Without the proper protection something as simple as a garden hose has the potential to contaminate or pollute the drinking water lines in your house. In fact, over half of the country's cross-connection incidents involve unprotected garden hoses. There are very simple steps that you, as a drinking water user, can take to prevent such hazards:

-Never submerge a hose in soapy water buckets, pet watering containers, pool, tubs, sinks, drains, or chemicals.
-Never attached a hose to a garden sprayer without the proper backflow preventer.

-Buy and install a hose bib vacuum breaker on every threaded water fixture. The installation can be as easy as attaching a garden hose to a spigot. This inexpensive device is available at most hardware stores and home-improvement centers.

-Identify and be aware of potential cross-connections to your water line.

-Buy appliances and equipment with a backflow preventer.

Buy and install backflow prevention devices or assemblies for all high and moderate hazard connections.

O

Substances That Could Be in Water

Us

o ensure that tap water is safe to drink, the Department of Environmental Protection (MassDEP) and the U.S. Environmental Protection Agency (U.S. EPA) prescribe regulations limiting the amount of certain contaminants in water provided by public water systems. The Food and Drug Administration (FDA) and Massachusetts Department of Public Health (DPH) regulations establish limits for contaminants in bottled water, which must provide the same protection for public health. Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of these contaminants does not necessarily indicate that the water poses a health risk. The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. Substances that may be present in source water include

Microbial Contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, or wildlife;

Inorganic Contaminants such as salts and metals, which can be naturally occurring or may result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming;

Pesticides and Herbicides, which may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses;

Organic Chemical Contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and which may also come from gas stations, urban stormwater runoff, and septic systems:

Radioactive Contaminants, which can be naturally occurring or may be the result of oil and gas production and mining activities.

More information about contaminants and potential health effects can be obtained by calling the U.S. EPA's Safe Drinking Water Hotline at (800) 426-4791.

Lead in Drinking Water

I present, elevated levels of lead can cause serious health

problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. We are responsible for providing you with high-quality drinking water but we cannot control the variety of materials used in plumbing components.

When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested.

Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or st www.eps.dow/safewater/lead.

Important Health Information

Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/ADS or other immune system disorders, some elderly, and infants may be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. The U.S. EPA/CDC (Centers for Disease Control and Prevention) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotime at (800) 425-4791 or http://water.epa.gov/drink/hotline

Final Annual State of the Reservation Report for Training Year 2018

HEROLOGUE IDSUSTANCE (UNIT OF HERSTER) VEX.M Marcing Marcine (UNIT OF HERSTER) VEX.MULL IDSUSTANCE (UNIT OF HERSTER) Decay of indention compared and marcine manage frame. Alberter Marcine (gmm) 2017 <	0	-0-))	0	1
SUBSTACK (UNIT OF INLESSUE) SAME to Make sign (Mr.) SAME to Make sign (Mr.) SAME to Make sign (Mr.) SAME to Make sign (Mr.) Description (Mr.) <thdescription (mr.)<="" th=""> <thdescription (mr.)<="" th=""></thdescription></thdescription>		YEAR	MEL	MCLG	AMOUNT	RANGE	LS			
Absolution (M-2) 2013 7 H5 VA	SUBSTANCE JUNIT OF MEASURE	SAMPLED	[MRDL]	[MRDLG]	DETECTED	LOW HIGH	VIOLATION	TYPICAL SOURCE		
Channel (pm) 2017 (4) (4) 1.64 (10)	Asbestos (MF.)	2013	7	7	RЭ	NA.	No	Bocay of ashrst	os coment water natural deposite	mains; Presien of
Abenda (gram) 200 2 2 0.90 0.900 Weiler addies data promote site on addies and promote site on addies and promote site on addies and promote and directing water andirecting water and directing water andirecting water andi	Chlorine (ppri)	2017	[4]	(4]	1.69	0.01 1.63	No	Water addi	itive used to cont	roimicmbes
selacente Achis (HAA) (roh) 1017 60 60 75 85 00 74 40 90 75 90 75 90 75 10 75 90 75	Huoride ¹ (ppm)	2016	2	2	0.95	0.33-0.59	No	Water addit	ive that promote:	s strong teeth
United (Fuel Trialsementanel) 2017 40 Na 274.4 228.0.1.1 No Approximation (second control of the large under called errors) Verefibrane (split) 2017 2 NA Hi Verefibrane (split) 2017 2 NA Hi Verefibrane (split) Verefibrane (split) 2017 1.0 1.0 Hi 1.0 0.027.2.73 Verefibrane (split) No No (split) (split) No (split) No (split) (split) No (split)	taloacetic Acids [HAAs] (opb)	2017	60	NA	5.85	ND-4 24	No	3y-preduct	of drinking water	reisinfection
Service rate (apt) 2017 2 NA N3 VA No Second rate (apt) Winde (part) 2017 10 10 1.73 6.07-7.73 No No Second (no) register) Second (no) register) <td>THMs (Total Trihalometharies) ppbl</td> <td>2017</td> <td>80</td> <td>NA</td> <td>75.4</td> <td>2.58 10.1</td> <td>No</td> <td>By product</td> <td>of drinking water</td> <td>reisinfection</td>	THMs (Total Trihalometharies) ppbl	2017	80	NA	75.4	2.58 10.1	No	By product	of drinking water	reisinfection
Winder (part) 2017 10 10 17.3 0.07-7.3 Vp Record (more scalar) Record (more scalar) With te topin) 2017 1.0 1.0 10.3 V/V No Record (more scalar) Record (more	Perchlorate (ppb)	2017	Z	NA	ND	NA.	No	Rocket propellants	, munitions, flare: agents	s, fireworks, blastin
Write (opr) 2017 1.0 1.0 10.3 10.4 No Result Provide (refinition ask, locality (refi	Nitrate (ppm)	2017	10	10	1.71	0.07-1.73	No	Runoll from terul sourage;	izer use, beaching Presion of natura	: From septic Lanks, Edeposits
Banim (ppr) 2015 2 0.00 0.00 VA 40 Natural receipt, cliling waters Gross Alpha (sG/1) 2012 15 NA 1.07 VK 40 Natural receipt, cliling waters Gross Alpha (sG/1) 2012 15 0 0 1.0 VK 40 Natural receipt, cliling waters Total Colling Bactesia 2017 5 0 0 1.0 0 VK 40 Natural version in the environment. Total Colling Bactesia 2017 5 0 0 0.0 0 VK 40 Natural version in the environment. Total Colling Bactesia 2017 10 0 0 0 VK 40 Natural version in the environment. Total Colling Bactesia 2017 11 0 0.0 0 VK 40 Natural version in the environment. Total Colling Bactesia 2017 11 12 1.1 1.1 0.0 00 1021 140 000 Natural version in the environment. Total Colling Bactesia 2017 12 1.1 1.1 1.1 0.0 00 1021 140 0002 Natural version in the environment. Equators and the environment in the environment. Total Colling Internation Internation Internation Internation Internation Internation Internation Internation Collection Internation In	Nitrite (ppm)	2017	1.0	1.0	ND	AF	No	Runoff from fertil sewage;	izer use, Leaching Drosion of natura	; from septic tanks, I deposits
Gross Alpha [cG/11 2012 13 NA 1.07 VA '40 Natural erasion Combined Radium (pD/) 2015 5 0 1.10 0.633 1.2 40 Natural erasion Trade Colliner Ractela 2017 0 0 VA 46 Natural erasion Tay water samples were collected for lead and copper natural erasion SMDUDT SMD SMD SMD SubSTANCE (UNIT OF INEASURE TARK) YRAH AL MCCL DEFECTED (ONIT ABOVE AL/ States) SMDUDE Cooper (opnt) 2015 1.3 0.900 (D2) 1/40 (D2) VA (D2) Defectors (D2)	Barium (ppm)	2015	2	0.002	0.002	VA	No	Natura	al erosion; drilling	wastes
Combined Radium (p0/-): 2015 5 0 1.10 0.432 1.20 4b Notural ensuin Total Collform Bacteria 2017 0 0 VA 4b Notural ensuin Total Collform Bacteria 2017 0 0 VA 4b Notural ensuin Total Collform Bacteria 2017 0 0 VA 4b Notural ensuin Total Collform Bacteria 2017 0 0 VA 4b Notural ensuin SUBSTANCE (UNIT OF NEASURE) YEAN AL MCCG DEFECTED (OVIT) 4b Defective (Coll Addee) Correction of household plumbing system 7: Ensuination (Coll Barrier, David Col Barrier, David	Gross Alpha (sCi/Li	2012	15	NA	1.07	WA.	No		Natural erosion	
Total Collitomin Backerial QUI Q Q VA Va Va Description Tap water samples were collected for lead and corporansityses from sample sites throughout the community Amount StrEs Amount StrEs Amount StrEs SubSTAMEE (UNIT OF MEASURE) VEAM A MCG DEFECTED (SOTH ABOVE AL/ EXCEEDANCE TYPICAL SOURCE Capper (opm) QUIS 1.3 0.00 (QUI) 1/26 (QUI) Yo Difficult Source of household plumbing system getter	Combined Radium (pC/)	2015	5	0	1.10	0.623-1.10	No		Natural erosion	-
Tap water samples were collected for lead and copper naniyes from sample sites throughout the community. AMOUNT OF NEASURE SUBSTANCE (VINT OF NEASURE YEAR AL MOUNT OF NEASURE YEAR AL OPECTED (VONT ABOVE AL) EXCEDANCE TYPICAL SOURCE Copper (opin): 2015 13 0 Comper (opin): Comper (opin)	Total Coliform Bacteria	2017	۵	0	0	AV.	No	Nati rally	present in the en	wironment
SUBSTANCE (UNIT OF MEASURE) YEAR ALL MCLO DETECTED (SVM ADVE ALL EXCERDANCE TYPICAL SOURCE Cooper (spin) 2015 1.2 1.3 0.900 (202) 1/40 (20) No Corrosion of household plumbing system p. Encil animal disposition Lead (prb) 2015 1.3 1.3 0.900 (202) 1/40 (20) No Corrosion of household plumbing system p. Encil animal disposition UNREGULATED SUBSTANCES TEAR AMOUNT TYPICAL SOURCE Corrosion of household plumbing system p. Encil animal disposition SUBSTANCE (UNIT OF MEASURE) TEAR AMOUNT TYPICAL SOURCE Corrosion of household plumbing system p. Encil animal disposition SUBSTANCE (UNIT OF MEASURE) TEAR AMOUNT TYPICAL SOURCE Corrosion of household plumbing system p. Encil animal disposition SUBSTANCE (UNIT OF MEASURE) TEAR AMOUNT TYPICAL SOURCE Corrosion of household plumbing system p. Encil animal disposition SUBSTANCE (UNIT OF MEASURE) TEAR AMOUNT TYPICAL SOURCE Corrosion of household plumbing system p. Encil animal disposition SUBSTANCE (UNIT OF MEASURE) TEAR AMOUNT Sonen sodure sta	Tap water samples were colle	cted for le	ad and cop	per analyse	es from sample	sites through	out the com	munity		
Copper (spin) 2015 1.3 0.000 P(2) 1/40 (02) 40 Distribution of household plumbing systems; Encidents (provided plumbing systems; Encidents) Land (pph) 2015 1.5 0 0.000 (02) 1/40 (02) 40 Distribution of household plumbing system; Encidents UNREGULATED SUBSTANCES VMM MOROUNT TYPICAL SOURCE Substances (Provided Plumbing System; Encidents) Substance (UNIT OF MEASURE) VMM MOROUNT TYPICAL SOURCE Substances (Provided Plumbing System; Encidents) Softward Environmentations (pph) 2015 0.63 Fuel doi:five; loaks and splils from gasoline stronge tanks Softward Environmentations (pph) 2015 2.70 Tribulamentations; byperoduct of divising water chlorination Broandichloromethans (pph) 2015 2.70 Tribulamentations; byperoduct of divising water chlorination Diblomethologonethans (pph) 2015 3.00 Tribulamentations; byperoduct of divising water chlorination Diblomethologonethans (pph) 2015 0.29 Tribulamentations; byperoduct of divising water chlorination *UNASEL Commotive (pph) 2015 0.29 Tribalamentation; byperoduct of divising water chlorinati	SUBSTANCE (UNIT OF MEASURE)	YEAR SAMPLED	AL	MCLG	DETECTED (90T)	ABOVE AL/	EXCEEDANCE	TYPICAL SOURCE		
Lead (pph) 2015 15 0 0.00 (02) LOC (04) 1/26 (02) LOC (04) No Correspond of household planking systems (Encire neural equicities) UNECULATED SUBSTANCE (UNIT OF MEASURE SAMPLED DEFECTED DEFECTED YEAN AMOUNT SAMPLED DEFECTED TYPICAL SOURCE SUBSTANCE (UNIT OF MEASURE SAMPLED DEFECTED YEAN AMOUNT SAMPLED DEFECTED TYPICAL SOURCE Solitum (pph) 2016 0.43 Fuel addriftee leaks and spills from gasoline stronge tanks Solitum (pph) 2017 0.1.1 Trificalmentame, try product of dinking water chlorination Disponse/bloomsthane (pph) 2017 0.3.4 Trificalmentame, try product of dinking water chlorination Disponse/bloomsthane (pph) 2017 0.3.4 Trificalmentame, try product of dinking water chlorination Disponse/bloomsthane (pph) 2015 0.29 Trificalmentame, try product of dinking water chlorination Disponse/bloomsthane (pph) 2015 0.29 Tobcharge from pulp rillit cession of natural decosis Chorenium (pph) 2015 0.29 Tobcharge from pulp rillit cession of natural ceopersts Value and there on a second water for the U.S. UALARS of the U.S. UALARS of the U.S. UALARS OF the U.S. UALARS OF the U.S. UALAR	Copper (ppm)	2015	1.3	1.3	0.600 (Q2) 0.295 (Q4)	1/40 (Q2) 0/40 (Q4)	No	Corrosion of hous	sehold plumbing : natural deposits	systems: Erosion of
UNREGULATED SUBSTANCES ⁴ SUBSTANCE (UNIT OF MEASURE) YPAR AMOUNT SAMPLED DEFECTED DEFECTED TYPICAL SOURCE Substance (UNIT OF MEASURE) SAMPLED DEFECTED SUBSTANCE (UNIT OF MEASURE) TYPICAL SOURCE Sodium (oph) 2015 31.6 Some sodium is always expected to the present in grounswarry tribulemethane, by-product of drinking water chlorination Sodium (oph) 2015 2.70 Tribulemethane, by-product of drinking water chlorination Bromodichloromethane (pph) 2015 3.40 Tribulemethane, by-product of drinking water chlorination Maganese (ppm) 2015 0.025 Discharge from pulp mills; existen of natural deposits Cheronium (ppt) 2015 0.29 industrial activities or from naturally occurring sources *LPA sol 4 pointed to: M/LL Outplete was a secondary or point and water weet to the source of the secondary of the source of the source of the secondary of the source of the source of the source of the secondary of the source of the secondary of the source of the secondary of the source of the source of the secondary of the source	Lead (pph)	2015	15	n	0.00 (02)	1/40 (Q2) 1/40 (Q4)	No	Corrosion of hous	schold plumbing a natural deposits	systems; Erosion of
SUBSTANCE (UNIT OF MEASURE) YEAR AMOUNT SAMPLED YPECAL SOURCE Methyl Tertiary Buryl Ether (ppt) 016 0.43 Fuel addrifyet leaks and spills from gazoline storage tanks Sodium (spin) 015 19.6 Some scilure is always repected to be present in grounewater Chloroform (sph) 017 0.1 Trihalemethane; by product of drinking water chlorination Bromodichioromethane (ppt) 015 3.40 Trihalemethane; by product of drinking water chlorination Diberochioromethane (ppt) 015 3.40 Trihalemethane; by product of drinking water chlorination Manganese (ppri) 015 0.40 Trihalemethane; by product of drinking water chlorination Manganese (ppri) 015 0.49 Trihalemethane; by product of drinking water chlorination **/ Met all contarium (ppt) 015 0.49 Trihalemethane; by product of drinking water chlorination **/ Met all contarium (ppt) 015 0.49 Trihalemethane; by product of drinking water chlorination **/ Met all contarium (ppt) 015 0.49 Trihalemethane; by product of drinking water chlorination **/ Met all contarium (ppt) 015 0.49 Some s	UNREGULATED SUBSTAN	ICES						1.		
Substruct (on the factorial is SAMPLED DEFECTED Production (a product of the second of the secon	SUBSTANCE (UNIT OF MEASURE)	YEAR	AMOUNT	TYDICAL SOL	ID/F					
Methyl Tertiary Buryl Ether (pp) 2016 0.63 Fuel addrifted links and apills from gasoline storage tanks Sodium (ppr) 2015 19.6 Some sodium is always expected to be present in groundswater Chloroform (ppb) 2017 0.1 Tribalemethane; by-preduct of drinking water chlorination Bramodichloromethane (ppt) 2015 2.70 Tribalemethane; by-preduct of drinking water chlorination Bramodichloromethane (ppt) 2015 3.40 Tribalemethane; by-preduct of drinking water chlorination Manganese (ppr) 2015 3.40 Tribalemethane; by-preduct of drinking water chlorination Chromium (ppb) 2015 3.40 Tribalemethane; by-preduct of drinking water chlorination Manganese (ppr) 2015 0.29 Industrial activities or from netural deposits Chromium (ppb) 2015 0.29 Industrial activities or from neturally occurring sources ¹ LPA exit if shared for MCL Southete was accordered or source or the reserver contexts, the source of the so	Substance (offit of Incustance	SAMPLED	DETECTED	1111012302	and the second s					
Sodium (ppr)) 2015 3.6 Some sodium values always reported to be present in groundwater Chieroform (opb) 2017 40.1 Tribulemethane; by-preduct of drinking water chierination Bramodichieromethane (pph) 2015 3.40 Tribulemethane; by-preduct of drinking water chierination Bramodichieromethane (pph) 2015 3.40 Tribulemethane; by-preduct of drinking water chierination Manganese (ppm) 2015 3.00 Discharge from pulp wills: erestion of neural deposits Heavailent Chromium (ppb) 2015 0.09 Industrial activities or from neutrally outcurring sources *UPR set Connecter to MCL Outlisher to su consoling value of a some social activities or from neutrally outcurring sources Prevention of neutral deposits *UPR set Connecter to MCL Outlisher to su consoling value of a some social activities or from neutrally outcurring sources Prevention of neutral deposits *UPR set Connecter to MCL Outlisher to su consoling value of a some social activities or from neutrally outcurring sources Prevention of neutral social active of the US. UPA has one social active of the social active of the VS. UPA has one social active of the social social deposite. *	Methyl Tertiary Butyl Ether (ppb)	2016	0.63			Fuel additive:	leaks and spills	from gasoline storag	je tanks	
Chicotorm (pb) 2017 0.1 Tribalemethane; by-product of drinking water chicination Bromodichioramethane (ppi) 2015 2.70 Tribalemethane; by-product of drinking water chicination Dibromochioramethane (ppi) 2015 3.40 Tribalemethane; by-product of drinking water chicination Manganese (ppi) 2015 3.10 Discourge from pulp rulls; erosion of natural deposits Chromium (ppb) 2015 0.19 Industrial activities on from naturally occurring sources ** Prospaticed contaminants are trace for which the U.S. LRA has not estate on for floring water chicination for source on the contaminants are trace for which the U.S. LRA has not estate on the floring water chicination for source on the contaminants are trace for which the U.S. LRA has not estate on the floring water chicination for source on the contaminants are trace for which the U.S. LRA has not estate on the floring water chicination for source on the contaminant are trace for which the U.S. LRA has not estate on the floring water chicination for source on the contaminant are trace for which the U.S. LRA has not estate on the floring water chicination for the contaminants are trace for which the U.S. LRA has not estate on the floring water chicination for the contaminant are trace for which the U.S. LRA has not estate on the floring water chicination for the contaminant are trace for which the U.S. LRA has not estate on the floring water chicination for the contaminant are trace for which the U.S. LRA has not estate on the contaminant are trace for which the U.S. LRA has not estate on the contane trace for which t	Sodium (ppm)	2015	19.6		Se	ome sodium la i	ilways expecte	a to be present in gro	whowater	
Bromodichloromethane (pph) 2015 2.70 Trihalemethane, by-product of drinking water chlorination Diboronechloromethane (pph) 2017 0.02.5 Trihalemethane, by-product of drinking water chlorination Manganese (ppm) 2017 0.02.5 Trihalemethane, by-product of drinking water chlorination Chormium (pph) 2015 310 Discharge from pulp in Ills: existen of natural deposits ** PPA sol 4 sumse (ne MCL Conducts as a secondary of nam run (seed 5 ML) of 2 son to floende to soten aretestimum nearth ** ** UPA sol 4 sumse (ne MCL Conducts as a secondary of nam run (seed 5 ML) of 2 son to floende to soten aretestimum nearth * ** UPA sol 4 sumse (ne MCL Conducts as a secondary of nam run (seed 5 ML) of 2 son to floende to soten aretestimum nearth * ** UPA sol 4 sumse (ne MCL Conducts as a secondary of nam run (seed 5 ML) of 2 son to floende to soten aretestimum nearth * ** UPA sol 4 sumse (ne MCL Conducts as a secondary of nam run (seed 5 ML) of 2 son to floende to soten aretestimum nearth * ** UPA sol 4 sumse (ne MCL Conducts as a secondary of nam run (seed 5 ML) of 2 son to floende to soten aretestimum nearth * ** UPA sol 4 son a to floe of which the US_A (DA) is an elevable so of a single to sol of a single to sol of a single to floende to sol of a single to floende to sol of a single to floende t	Chloroform (cpb)	2017	10.1			Trihakomethan	e; by-product o	of drinking water chie	arination	
Dibbornechloremethane (ppb) 2015 3.40 Tribalemethane, by produce of drinking water chlorination Marganese (ppm) 2017 0.02.5 Discharge from pulp mills; erosion of natural deposits Chromium (ppb) 2015 3.10 Discharge from pulp mills; erosion of natural deposits * LPA sol / somes the MCL Culptone was accounter of naminary recel/S+4D of a som for floring on the account account account account account of the max accounter of activities or from natural deposits * LPA sol / somes the MCL Culptone was accounter of naminary recel/S+4D of a som for floring on the account activities or from natural deposits * LPA sol / somes the MCL Culptone was accounter of naminary recel/S+4D of a som for floring on the account accounter activities or from natural deposits * LPA sol / somes the MCL Culptone was accounter of naminary recel/S+4D of a som for floring on the account of naminary recel/S+4D of a som for floring on the accounter activities or from natural deposits * Definitions MRDI (Maximum Residual Division floring water on the floring of the accounter activities or from some water on the account of a count on the account of the accounter of the accounter activities of a some account of the account of the accounter activities of the account of the accounter activities of a single-tank induced account of the accounter activities of a some accounter activities accounter activiti activiti accounter activities accounter activiticacco	Bromodichloromethane (ppb)	2015	2.70			Trihakmethan	e, by-product o	of drinking water chip	rination	
Description	Dibromochloromethane (ppb) Manganese (nom)	2015	3.40			Tribalemethan	e, by product a Freedom of real	of drinking water chie turst denosity	rination	
Hexaelent Chromium (ppt) 2015 0.29 Industrial activities or from naturally occurring sources ¹ LPA set Chromium (ppt) 2015 0.29 Industrial activities or from naturally occurring sources ¹ LPA set Chromium (ppt) 2015 0.29 Industrial activities or from naturally occurring sources ¹ LPA set Chromium (ppt) 2015 0.29 Industrial activities or from naturally occurring sources ¹ LPA set Chromium (ppt) 2015 0.29 Industrial activities or from naturally occurring sources ¹ LPA set Chromium (ppt) 2015 0.29 Industrial activities or from naturally occurring sources ¹ LPA set Chromium (ppt) 2015 0.29 Industrial activities or from naturally occurring sources ¹ LPA set Chromium (ppt) 2015 0.29 Industrial activities or from naturally occurring sources ¹ LPA set Chromium (ppt) 2015 0.29 Industrial activities or from naturally occurring sources ¹ LPA set Chromium (ppt) 2015 0.29 Industrial activities or from naturally occurring sources ¹ LPA set Chromium (ppt) 2015 0.40 Industrial activities or from naturally occurring sources ¹ LPA set Chromite (for or s	Chromium (not)	2015	510			Discharge fr	om pulp milis;	erosion of natural cej	piesits	
 ¹ UM set 4 some be MCL Consistences a secondary option and recell SPUL of a som for floored to better activity in man healt ¹ UM set 4 some be MCL Consistences a secondary option and recell SPUL of a som for floored to better activity in man healt ¹ Dregolated contaminants are travely for which the US, UK has builded at the secondary option of more computergended of the manufacture option of the secondary option option of the secondary option of the secondary option option of the secondary option opti	Hexavalent Chromium (ppb)	2015	0.29			Industrial act	ivities or from	naturally occurring su	ources	
Definitions Soft Percentile (out of every .) frames sampled, stwep or a trace with level Al. (Action Locel): The contractor of a contemports that a contemport of the contractor of a contemport of the c	¹ LPA set Colonios Cre MCL Curjatore ¹ Chegidored contaminante are troos t dien etc presente in die sing water and	ives a concorda for which the whether for	dis refution as U.S. CKA has Intragale con	ny ievel 35 futjo rot establis rec is warrenter	of a port for floor	de to setter angle reards, i he purse	st human keasih ze of mor saning	autopolaka kensi mra	meses to adjust orga	.S. LPA in coto minim
Stoch Percentiller Courd every J. Jammes sampled, stweamt a heave this love Interfering water that a beneficial of the log state in the courd in the log state	Definitions	1	-	MRH	(Maximum Residu	al doctor to to to to	Surfage of S	pl3/baprenan ito pe roheselivity)	a (mecane pl	-
AL (Astimulation Level): "To example the analysis of a contaminant which is best on the contaminant level): The contaminant level): The topical sector is contained sector is contaminant level. The topical sector is contaminant level is contaminant level. WILL (Maximum Kender): The level of topical sector is contaminant level): The topical sector is contaminant level. The topical sector is contaminant level is contaminant level. MILL (Maximum Kender): The level sector is contaminant level. The topical sector is contaminant level. The topical sector is contaminant level is contaminant level is contaminant level. The	Such Percentiller Gut of ever sampled, y we but a the ow	ey 10 homes this loye	a -	thet add: miterable	androking water 1 nion of a disinfecta- tion of a disinfecta- al contaminants.	n is necessary for	section of	ppb (parts per billion): cubstance per billion par in encemme per from	Creman Trense a	
TORES MCL (Moximum Continent Level): there is no conserve as part of use to call the REGIES is in the reduced in use of the use of th	Al. (Action Loose): "Terra a contemport which Center postment or other requirement	ocidateteria edeci foigare cletteria wa	d y loc system mu	MRDIA Distuted	G (Maximum Renis tant Level Goal). waist dismission	fual The bystoria schow which	1	ppun (parts per million) er bet-roz par million pu millionen per bler)	K≜ najart Esweivi (n	
allowed meaning when MC and, we of classifier a MC. Us as bossible, erg the bas, as stablement to brocking.	MCL (Moshoum Control The Local and the	nant Level).	15	the estimation of the estimate	na en write experi et the benefite of th d occlamitions:	al use to balth 1 e use of chindsoft	nte te scental	NI D. Kephelastor e P	ur hid by Units	1
and the second se	allowed meaning wells. 5 MC, Os as fassible, step the technology	10 ann ac ial	o closenent s leuresment	NUTNa m. ober.	t detected (,) a diear na wear of Franklig	se that the blane at y		1		
General and the field in a contraction in the second secon	MCLG (Maximum Contan Geoly: Lie level of a contan criming water below of the	ninant Lovel ninant in There is no	1	NA: Te	abbjicap.s	- State		2-11		

Bourne Water District

Water Quality Report 2017

WATER QUALITY REPORT FOR 2017

We are pleased to present a summary of the quality of the drinking water provided to you during 2017. We conducted over 950 tests for more than 84 contaminants. This report is a snapshot of last year's water quality. The Bourne Water District is committed to providing you with a reliable water supply. We believe informed customers are our best allies. You are welcome to attend the Board of Water Commissioners meetings held at the Bourne Water District's office, at 211 Barlow's Landing Road in Pocassel. The board's meetings are scheduled for the second Tuesday of the month at 8:30 AM, and the Annual District meeting is scheduled on the fourth Monday in April.

WATER SOURCES AND TREATMENT

CATAUMET

BOURNE WATER DISTRICT

The Bourne Water District is supplied by 10 different sources, 7 of our own gravel packed well sites and 3 gravel packed well sites from the Upper Cape Regional Water Supply Cooperative. Four of our well sites are in the Monument Beach area of the Town Forest. The other two wells are in the Cataumet area of the Town of Bourne. One well is on Joint Base Cape Cod and we have one transfer station on Connery Ave. The Bourne Water District treats all supplies with lime slurry for corrosion control. The lime slurry is used to raise the pH of the water. This makes the water less aggressive to the copper pipe and lead joints in your homes to prevent exposure to lead and copper.

WHAT DOES THE FOLLOWING TABLE MEAN?

Action Level (AL) The concentration of a contaminant which if exceeded triggers treatment or other requirements. Maximum Contaminant Level (MCL) The highest level of a contaminant that is allowed in the drinking water. The MCL is set as close to the MCLG as feasible using the best available treatment technology. Maximum Contaminant Level Goal (MCLG) The level of a contaminant in the drinking water below which there is no known or expected risk to health. The MCLG allow for a margin of safety.

90th Percentile Out of every 10 houses sampled, 9 were below this level.

KEY TO TABLE

AL = Action Level MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal MFL = million fibers per liter Mrem/year = millirems per year (a measure of radiation absorbed by the body) NTU = Nephelometric Tarbidity Units pci/l = picocuries per liter (a measurement of radioactivity) ppm = parts per million, or milligrams per liter (mg/l) ppb = parts per billion, or micrograms per liter (ug/l) ppt = parts per trillion, or nanograms per liter ppq = parts per quadrillion, or picograms per liter TT = Treatment Technique

KEY TO TABLE

AL = Action Level

MCL = Maximum Contaminant Level

MCLG = Maximum Contaminant Level Goal

MFL = million fibers per liter

Mrem/year = millirems per year (a measure of radiation absorbed by the body)

NTU = Nephelometric Turbidity Units

pci/l ~ picocuries per liter (a measurement of radioactivity)

ppm = parts per million, or milligrams per liter (mg/l)

pph - parts per billion, or micrograms per liter (ug/l)

ppt - parts per uillion, or nanograms per liter

ppq = parts per quadrillion, or picograms per liter

	DISTRIBUTI	ON SYSTEM	WATER QU	AUTVINST	port summaritae	early Case Nois	s diebe Djald Swek	ng Sampling-nati al'anntamisteris di se vic
Microbial Results	righest detect to a mentă	Range Detected	MQL	R	WELG Vielation		Possible Source of Contemination	
10tal Caliform Bacarria**	0	D.	σ		D ND		Naturally present in the environment	
Recal Colliform or E. Coll	0	0			0	1. 1	No	Human and Animal Recal Waste
**Total Coliform:Colifor bucteria may be present	scal Collform/i te are bacteria t	E.Coli MCL is that are na	determine turally pres 1	d upon ack ent in the c T	Etional reps invironmen	at testing t and are use	ad as an inc	licator that other potentially barmful
Lead and Copper	Dates collected	Sati: Percentile	Action Level	MCGL	# of sites sampled	\$ Sites above Action Level	Violation	Possible Source of Contamination
Lead (opb)	3/21/2017 thes 12/61/3012	4	1.2	σ	120	9	No	Corrocton of household starsling systems: Erision of instand deposits
Copper (parit)	5/00/2002 (hru 1/2/31/2007	1.51	1.5	1,3	120	7	Yes	Comusion of household plumbling systems: entrion of catural deposits
TEST INCE FOR LEASE - P. presents, the composition is associated with servic consistent of With en pair was been based associated, if you are encoursed of a presentative from the Safa Definiting	control levels of lead- control levels of homes to our altiting for service to find in your water Water Hactive as at SUMMARY (nan contra series Nan Ing, Bourn Michaels, you na You may only to http://www.spii DF FINISHEE	wanth problem e Water Detriet ner hände the p hans yete wete poylaniese bay WATER Ch	n expectation in expectation attention for low crostled, Indon load, HARACTER	ini provinsi wome ini provinsi ng hiy di antonu ng hiy Matina Alangti ka 1571CS	nisara yanıng atrib ga qı aliay dalakis uaking yolucup tar sa araninilarg wala	ren, Lond in sin gwoter, bob ca "No seconds to in, testing meth	obag water is privately the minister of a sind mice control of the we stry of an attende used in prismotin mice control of the weating water in the first blog or one will also revealed at the time in prive separate to see will also revealed at the time in prive separate
Regulated Contaminants	Date(s) collected	Highest Detect Value	Rangé I	Detected	MOL	MCGL	Wolation	
Inorganic Co	ontaminants:			_				
Sarium (ppm)	11/2/2018	0.015	0.0	016	2	2	No	Distingue of duling wants; shokarge tray meral research, readon of attack products
Sodium(ppm)***	10/11/2017	21***	0	-21		20	NC	Road soltinggerosion of natural deposits
Nitrate = (ppm)	10/11/2013	0.79	0.09	- 0.79	10	10	Na	Rives ²⁵ from the tillicer constants from any list testes provide constant of matterial deprises.
					1 10	70		

Notice in admiting women in New X allows and heat the New York and Section 1000 per section of the Section and the Sectin and the Section and the Section and the Section and the Section

***Sadium is a caturally-octioning element from this of and water, it is recessive for the normal functioning of regulating fullds in human systems. Some neeple, however, have difficulty regulating fulld volume as a result of usual diverses, including congestive heart failure and hypertension. The guideline of 20mg/L for sodium respectives a low! In water that obsidiation and sodium sensitive individuals should be aware of in cases where sectium associates a low in a science account of the dividual solution information, contact you health care provider, your local listent of Headform the Messathusens Dept. of Fublic Health, Survey of favoremental Health Assessment at 517-624-5757.

Omment	antaminante	1 1		1	3	2
Co Same 12	and an interests	21		+		1
Taximum metrylere (NCL (208)	1/19/20:	17 2.59	ND (1.59	5	1.00	NG Unchange from losser as and dry classes.
of an even we look	+ 10/1/201	17 L38	WB-1.43	OK9G AL	NA	NO Be studiets of disking success strong of
2. Contractivity (1993)	1 200	10 2.77	ND-2.97	75	115	NO Received and acceleration of the second s
	÷ -		7			
	1	arrest t				
		Highest		1	8	
Second and and and	Date(s)	Detect	G. LANDER	1.55	1.	I manufacture and a second sec
erromone A recommission and the	Comacted	Value	Range Detected	SMG	OSRG	Possible Source of Contamination
Alegnesium (ppm)	20/11/202	17 18	.09-2.8		1 2	Natural Mineral and Organic Matter
Interval (polar)	10y11/200	42	7.4-12	250	E RIA	Natural Minnell, Read Solu
section (open)	10/11/200	17 18	3.7-16	4 2	1.1	Nilkowi Minerat and Organiz Matter
eineninne (abio)	\$1/2/202	16 2.99	1.99	02	NA	Nightal Mineral and Organic Maller
ron (cpo)	10/11/201	17 1.85	0.02-1.88	300	NA	President to per Digitize and an extension of the extension
Mangenes∈(ppb)*	, 18/11/201	0.041	ND-041	50	NA.	Grosion of National Disposites
Gession (nem)	10/51/205	2 15	05.1.5	÷	1	£
kilfate (pom)	10/11/201	7 73	13.73			National Wineral and Diganic Multier
(mc (pipe))	10/11/201	7 0.033	14.14° / 1.5		250	Natural Sources
"EPA bas established a l	fotime has it	advisere /11M	For Marianness and A	2	164	former of Friend Decourt, and Indectral distances
Construction and an and a	and a second second	strained third	tat toengoreese at a	COOPER SUG S	in stote at 1	ucompe
	1.	Unemper 1		1	1	Den i
	Dorolet	Post units.				
CadicanueSeles	rollorial	Water	-		Inner	a sub- ferrer and the second
Storid Alpha (nt') //	200	*ange	manife Detected	4	Vibiation	Possible Source of Contamination
Bedirien 226 (SCLAL		2 202	-0,28		NO	Erosion of Natural Deposit
todi an 338 (actidi	201	5 0,04	0.54		NO	Erbsion of Natural Denosity
oregine soo (beful	. 200	5 2.25	2.25	2	NO	Erosion of Karural Deposit
CREAT CRA		Higheat				
Conners cros outregolato	d Date(N)	Oetect	in second second			
our common and some	conected	Value	Range Detocated		OSRG/oph	Possible Scerce of Contain Insteam
			8D - 17		0.3	Solvers or exhibites used in processing of processing statistic unemprove and conduct
4 Diaxane(ppb)	2037	0 9,14	1000 000			A second s
.4 Diaxane(ppb) blorste	201	4 .33	ND-53	÷.	ND.	Matural occurring element
.4 Dioxane(ppb) hiorste ichloroethane	201	4 33	ND-53	~	ND	Natural occurring element
.4 Diaxane(ppb) hiorste Ichlaraethane hromiem (up/c)	201	4 53 4 7,77 9 041	ND-53 RD-2.77 D3D-0.07		ND ND	Natural occurring element Natural occurring element
.4 Dioxane(ppb) blorste Schlaroethane Sromium (up/1) trantrum (up/1)	201 201 201 201	4 33 4 7,77 4 7,77 4 0,41 a 30	ND-53 RD-2.77 D.30-0.41 91-32		ND ND ND	Natural occurring element Natural occurring element Prevelent natural alement
(.4 Dioxane(ppb) hiorste Nohlaraethane Dromium (ug/L) trantium (ug/L)	201 201 201 201 201 201	4 33 4 7,77 9 0,41 4 32	NG-53 NG-2,77 D.30-0,41 21-32		ND ND ND NO	Natural occurring element Natural occurring element Prevident natural atemant Natural occurring element
.4 Diaxarve(ppb) biorste Inchlarcethane Bromium (us/2) brontrum (ug/1) anudhum (ug/1)	201. 201. 201. 201. 201. 201. 201.	6 0.17 4 33 4 7.77 6 0.41 a 32 4 0.20	ND-53 ND-2.77 D.30-0.41 21-32 ND-0.20		ND ND ND ND ND	Natural occurring exement Natural occurring element Prevelent natural atemant Natural occurring element Natural occurring element
(A Diaxare(pob) Chiorste Schlarbethane Dromium (ap/c) trantrum (ap/l) Arnedium (ap/l) Promitam VI (as/L)	2021 2011 2011 2011 2011 2014 2014 2014	4 33 4 7.77 4 7.77 4 0.41 4 32 4 1.20 4 1.20	NO-53 NO-53 D3D-0.43 21-32 ND-0.20 ND-0.20	i.	ND ND ND ND ND	Natural occurring element Natural occurring element Prevident natural element Natural occurring element Natural occurring element Industrius that anacess or une chromium pr chromium formulands
,4 Dioxane(ppb) biorste Ichloraethane hromium (ug/L) anadium (ug/L) Hromiam VI (ug/L)	2021 2011 2012 2014 2014 2014 2014	6 0.14 4 33 4 7.77 4 0.41 4 32 4 520 4 529 4 5.29	ND- 53 ND- 2,77 D.30 - 0,41 21 - 32 ND- 0 20 ND- 0 20	÷.	ND ND ND ND ND	Natural occurring element Natural occurring element Prevident natural element Natural occurring element Natural occurring element Industries that oraciss or use chromium or chromium comucunds
,4 Dioxane(ppb) biorste Ichlaraethane hromiom (ug/L) anudium (ug/L) Promiom VI (ug/L) execution VI (ug/L)	203 201 201 201 201 101 201 201 201	4 33 4 7,77 9 0,41 4 32 4 7,77 9 0,41 4 32 4 0,29 4 0,29 4 3,52	NG- 53 NG- 2,77 D30- 0,41 21 - 32 ND- 0 20 ND- 0 20		ND ND ND ND ND ND ND	Matural occurring element Natural occurring element Prevelent natural alement Natural occurring element Natural occurring element Industries that anotess or use chromium or chromium comucunds Natural occurring element

The Use place Conservation of USERS (InFORTMETICATION ADDUTING A DOUTING WATER - Assessing within the Conservation of Conserva

come merides effer cafe regioner water sublity lesurer

NATIONAL PRIMARY DRINKING WATER REGULATION COMPLIANCE

The Total Coliform rule requires water systems to theet a stricter limit for Coliform bacteria. Coliform bacteria are harmless, but the presence in water can be an indication of disease-causing bacteria. When Coliform bacteria is found, special follow up tests are done to determine if harmful bacteria are present in the water supply. Over 500 Coliform samples were taken throughout the Bourne Water District in the year 2017.

In December of 2017 Bourne Water District exceeded the action level of copper with the 90th percentile sample being 1.51ppm. Bourne Water District does a new round of lead and copper samples in May, 2018. Exposure to high levels of copper can cause health problems. Short term exposure to high levels of copper can cause gastrointestinal distress. Long term exposure and severe cases of copper poisoning can cause anemia and disrupt liver and kidney function.

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead and copper in drinking water is primarily from materials and components associated with service lines and home plumbing. The Bourne Water District is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead and copper exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead and copper in your water, you may wish to have your water tested. Information on lead and copper to drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

Sodium; ORSG = 20 Sodium sensitive individuals, such as those experiencing hypertension, kidney failure or congestive heart failure, should be aware of the levels of sodium in their drinking water where exposures are carefully being controlled. <u>Massachusetts Office of Research and Standard Ouidelines (ORSG)</u>: This is the concentration of a chemical in drinking water, at or below which, adverse health effects are health to occur after chronic (hietime) exposure, with a margin of safety. If exceeded, it serves as an indicator of the potential need for further action.

The Bourne Water District sampled the new well #8 for Synthetic Organic Compounds (SOC) in 2016. All tested SOC Regulated Contaminants had returns of no detect (no contaminants present). In addition to the contaminants we test for, we are mandated to test for hundreds of additional substances and microscopic organisms to make certain our water is safe and of high quality. If you are interested in a more detailed report, contact Robert Prophett at 508-563-2294.

REQUIRED ADDITIONAL HEALTH INFORMATION: To insure that tap water is safe to drink. Department of Environmental Protection (DEP) and Environmental Protection Agency (EPA) pre-scribes limits on the anothers of certain contaminants in water provided by public water systems. Food and Drug Administration (FDA) and the Massachusetts Department of Public Health regulations establish limits for contaminants in bottled water. Druking water, including bot-tled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not nec-essarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency Safe Drinking Water Hotline (1-800-426-4791). The sources of dinking water (but tap and bottled) include rivers. lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and radioactive material and can pick up substances resulting from the presence of animals or from human activity. Contaminants that may be present in the sources include:

- (A) Microbial contaminants such as viruses and bacteria which may come from sewage meatment plants, acplie systems agricultural byestock operations and wildlife
- Inorganic contaminants such as salts and metals which can be naturally-occurring or result frum orban storm ronoff, industrial or domestic wastewater discharges, oil and gas production, mining or farming. (B)
- (C) Pesticides and herbicides, which may come from a variety of sources such as agriculture, storm water runoff and residential uses.
- (D) Organic chemical contaminants, including synthetic and volatile organics which are by-products of industrial processes and petroleum production and can also come from gas stations, urban storm water ranoff and septic systems.

(B) Radioactive containinants, which can be naturally occurring or be the results of oil and gas production and mining activities. In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provid-ed by public water systems. FDA regulations establish limits for contantinuuts in bottled water which must provide the same protec-tion for public health.

Some people may be more outherable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergoine organ transplants, people with HIV/AIDS or other immune system disorders, some elderly and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infections by Cryptosportdium are available from the Safe Drinking Water Hotline (1-800-426-479)}.

SOURCE WATER ASSESSMENT

The Bourne Water District had a source water assessment performed by the MA. Department of Environmental Protection in 2002. The Source Water Assessment and Protection (SWAP) program, established under the Pederal Safe Drinking Water Act requires every state to:

- Inventory land uses within the recharge areas of all public water supply sources. - 0 -
- Assess the susceptibility of drinking water sources to contamination from these land uses.
- Publicize the results to provide support for improved protection,

A susceptibility ranking of high was assigned to the Bourne Water District using the information collected during the assessment by the DEP. The high ranking was due to the potential contamination from land uses such as anto repair shops, truck terminal, furniture refinishing, auto salvage operation, an industrial park and activities in the recharge area (Zone II's) of some of the wells. The complete SWAP report is available at the Bourne Water District's office. For more information contact Robert Prophett at 508-563-2294.

CROSS CONNECTION

A cross connection is a connection between a drinking water pipe and a polluted source. The pollution can come from your own home. For instance, you're going to spray fertilizer on your lawn, and you hook up your hose to the sprayer that con-tains the fertilizer. If the water pressure drops (say because of a fire hydrant being used or water main break) when the hose is connected to the fertilizer sprayer, the fertilizer may be sucked back into the drinking water pipes through your hose.

Is connected to the terminar sprayer, the terminar may be sucked back into the articking water pipes through your nose. Using an anti-siphon backflow-prevention device on your sprayer or hose bib can prevent this problem. The Bourne Water District recommends using devices with an anti-siphon feature or equipping hose bibs with hose bib vac-num breakers to prevent against back flow. For additional information on cross connections and on the status of your water system's cross connection program, please contact Robert Propheti at 508-563-2294.

UPPER CAPE REGIONAL WATER SUPPLY COOPERATIVE (PWS #4261024)

The Upper Cape Regional Water Supply consists of three groundwater supply wells located on the Massachusetts Military Reservation. A Board of Managers representing the four member public water supply systems manages the Cooperative. The member public water supply systems include Bourne Water District. Sandwich Water District, Mashpee Water District and the Town of Falmouth. The Cooperative also has capacity to supply water to the Joint Base Cape Cod public water system, and the Barnstable County Jail.

Wells #1, #2, #3 are located in a forested area of the northeastern portion of the Joint Base Cape Cod(JBCC). The JBCC has adopted a Groundwater Protection Plan to prohibit inappropriate activities in the Zone II areas of community public water supply wells. In addition, the creation of the Environmental Management Commission provides oversight over activities on the northern portion of the JBCC. For information regarding the Groundwater Protection Plan call Elizabeth Kirkpatrick at (508) 968-6487. For information regarding the Environmental Management Commission call Len Pmand at (508) 946-2871. For questions regarding SWAP or other information about Upper Cape Regional Water Supply CCR contact Don Rugg at (508) 888-7262.

APPENDIX F RARE SPECIES REPORTED TO NATURAL HERITAGE AND ENDANGERED SPECIES PROGRAM

			LIST OF R	ARE SPEC	CIES REPC	DRTED TO NI	HESP			
HISTORY										
Common / Scientific	TY 2009	TY 2010	TY 2011	TY	TY 2012	TY 2014	TY 2015	TY 2016	TY 2017	TY 2018
Names	2009	2010	2011	2012						
Grathenner Snarrow]										
(Ammodramus savannarum)	68	50	26	40	36	26	100	59	44	47
Northern Harrier ¹	4	0	4	5	0	10	\//intoring	\\/intoring	\\/intering	\/intoring
(Circus cyaneus)	4	4	4	5	0	12	wintering	winiering	wintering	wintering
Upland Sandpiper ¹	20	20	3	3	15	3	22	20	23	20
(Bartramia longicauda)	27	27	5	5	15	5	22	20	25	20
Northern Parula	1	0	0	0	0	0	0	0	0	0
(Parula Americana)	•	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	v	Ŭ	Ŭ	Ŭ
Sharp-shinned Hawk ¹	1	0	0	0	2	2	1	0	0	0
(Accipiter striatus)		· ·	Ŭ	Ŭ	-	-		Ŭ	· ·	°
Vesper Sparrow	3	8	3	1	3	1	0	0	0	0
(Pooecetes gramineus)										
Whip-poor-will ²	0	0	0	201	51	156	96	87	52	110
(Caprimulgus vociferous)										
Long-eared Owl ¹	0	0	0	0	0	1	0	0	0	0
(Asio otus)										
Bald Eagle ¹	0	0	0	0	0	0	2	0	0	0
(Haliaeetus leucocephalus)	0	0	0	0	0	0	3	0	0	0
rececephalos				0	DONATES	;				
Comet Darner ³						_	_			
(Anax longipes)	9	6	14	4	0	5	0	N/A	N/A	N/A
Spatterdock Darner ³		_								
(Aeshna mutate)	13	7	10	14	0	9	0	N/A	N/A	N/A

			list of r	ARE SPEC		DRTED TO NH	IESP			
Common / Scientific	ТΥ	ТΥ	ТΥ	TY	TY	TY 2014	TY 2015	TY 2016	TY 2017	TY 2018
Names	2009	2010	2011	2012	2013					
				REPTILES a	and AMP	HIBIANS				
Eastern Box Turtle										
(Terrapene carolina carolina)	10	13	29	13	11	15	0	38	42	43
BUTTERFLIES and MOTHS ¹¹										
Barrens Buckmoth (Hemileuca maia)	0	0	0	0	0	4 clusters	13	90	95	0
Pine Barrens Speranza (Speranza exonerate)	0	0	0	0	0	0	0	44	13	0
Sandplain Euchlaena (Euchlaena madusaria)	0	0	0	0	0	0	0	3	7	0
Coastal Swamp Metarranthis (Metarranthis pilosaria)	0	0	0	0	0	0	0	1	1	0
Melsheimer's Sack Bearer (Cicinnus melsheimeri)	0	0	0	0	0	0	0	2	0	0
Gerhard's Underwing (Catocala herodias)	0	0	0	0	0	0	0	33	10	0
Pine Barrens Zale (Zale lunifera)	0	0	0	0	0	0	0	13	8	0
Barrens Dagger Moth (Acronicta albarufa)	0	0	0	0	0	0	0	1	0	0
Drunk Apamea (Apamea inebriata)	0	0	0	0	0	0	0	1	0	0
Pink Sallow (Psectraglaea carnosa)	0	0	0	0	0	0	0	9	5	0

LIST OF RARE SPECIES REPORTED TO NHESP										
HISTORY										
Common / Scientific	TY	TY	TY	TY	TY	TY 2014	TY 2015	TY 2016	TY 2017	TY 2018
Names	2009	2010	2011	2012	2013					
				BUTTERFL	IES and N	NOTHS				
Pink Streak	0	0	0	0	0	0	0	25	0	0
(Dargida rubripennis)	· ·	· ·	Ŭ	Ŭ	, in the second s	· ·	· ·		, i i i i i i i i i i i i i i i i i i i	, in the second s
Unexpected Cycnia	0	0	0	0	0	0	0	0	1	0
(Cycnia inopinatus)	-	-	-	-	-	-	-	-		-
Coastal Heathland	0	0	0	0	0	0	0	0	,	0
(Abaarotis beniamini)	0	0	0	0	0	0	0	0	1	0
Pine Barrens Lycia										
(Lycia ypsilon)	0	0	0	0	0	0	0	0	2	0
Water-willow Stem Borer										
(Papipema sulphurata)	0	0	0	0	0	0	0	0	1	0
Waxed Sallow Moth	0	0	0	0	0	0	0	0	•	0
(Chaetaglaea cerata)	0	0	0	0	0	0	0	0	2	0
Frosted Elfin	0	0	0	0	0	0	0	0	F	F
(Callophrys irus)	0	0	0	0	0	0	0	0	э	э
				CRU	ISTACEAI	NS				
Agassiz's Clam Shrimp ¹⁰										
(Eulimnadia agassizii)	0	0	0	0	0	0	1	0	6	38
				I	PLANTS					
Adder's Tongue Fern ^{4,6}	0	120	40	04	540	1 447	254	00	247	0
(Ophioglossum pusillum)	0	130	40	04	542	1,407	230	70	24/	0
Broad Tinker's Weed ^{5,6}						297	4,861 plants			
	69	56	233	332	1,230	plants	11.611	113	127	0
(Triosteum perfoliatum)						945 stems	stems			

LIST OF RARE SPECIES REPORTED TO NHESP HISTORY										
Common/Scientific Names	TY 2009	TY 2010	TY 2011	TY 2012	TY 2013	TY 2014	TY 2015	TY 2016	TY 2017	TY 2018
PLANTS										
Torrey's Beak Rush ¹² (Rhynchospora Torreyana)	2,550	4,800	2,606	4,416	910	N/A	N/A	N/A	N/A	N/A
American Arborvitae (Thuja occidentalis)	0	0	0	0	0	0	4	4	N/A	N/A
				MA	MMALS					
Northern Long-Eared Bat ^{7,8} (Myotis septentionalis)	0	0	0	0	0	8	22 (2)	TBD	TBD	TBD
Little Brown Bat ⁷ (Myotis lucifugus)	0	0	0	0	0	4	40	TBD	TBD	TBD
Tricolored Bat ⁷	0	0	0	0	0	11	11	TBD	TBD	TBD

(Perimyotis subtiavus)

¹ NHESP is only accepting reports of nesting raptors, rather than opportunistic observations of individuals. Reports are provided as relevant, but common wintering birds or migrants are not individually tracked or reported (e.g., Northern Harrier). ² As of TY 2016, quantities only reflect the results of annual survey routes during May, after totaling the minimum number (between two observers) heard at each site. In prior years, the number shown reflects the quantity reported to NHESP, which may include multiple survey windows and repeated counts.³ Spatterdock Darner is no longer on NHESP's rare species list. Also, Odonate surveys were suspended after TY 2015.⁴ Several known Ophioglossum sites could not be surveyed in TY 2016 due to a lack of cease-fire agreement with the off-base Monument Beach Shooting Club. ⁵ Surveys performed in 2015 did not differentiate Triosteum perfoliatum from T. aurantiacum, greatly increasing the number of individuals reported. For this reason, Triosteum perfoliatum was not reported to NHESP in 2015. ⁶ In 2018, only sites with historic records and no recent records were surveyed, and this should not be interpreted as a loss of rare plants between 2017 and 2018. 7 Acoustic monitoring collects "call sequence" data and the true number of individuals is unknown. Numbers in the table reflect the number of survey sites with acoustic detections. Numbers are reported to NHESP, but not tracked by them due to current uncertainty in using acoustic identifications. TY 2017/2018 data is still being processed, these numbers are to be determined at a later date (TBD). 8 Number in parentheses is captured individuals trackable by NHESP due to species identification confirmation versus acoustic data. 9 NHESP is not interested in tracking this population, as it is likely of anthropogenic origin (pers. comm. with State Botanist, Bob Wernerehl). ¹⁰ Numbers represent only locations where species was found and ID confirmed by NHESP Aquatic Ecologist. ¹¹ Moths were extensively surveyed under contract with the Lloyd Center for the Environment between 2016 and 2017. There were no surveys in 2018, and MAARNG staff is not recording flight records of Barrens Buckmoth, as they are ubiquitous around the Reserve. ¹² Torrey's beak rush is on Coast Guard land and the Natural Resource Office is no longer monitoring this site.

APPENDIX G ENVIRONMENTAL PERFORMANCE STANDARDS VIOLATIONS HISTORY

EPS VIOLATIONS									
HISTORY									
TRAINING REPORTED EXPLANATION OF	CORRECTIVE								
YEAR VIOLATION VIOLATION	ACTION								
IY 2018 Rare Species A road puddle containing Camp Edwards wi	ill, atter relocation of the clam								
EPS state-listed Agassiz clam shrimp and in conc shrimp was filled by a unit puddles use signa	err with the CMP, fill the								
(FPS 3) training at Dig Site 1. The after relocation of	the clam shrimp and in concert								
MAARNG forwarded a with the CMP, fill t	the puddles, use signage to								
formal notice of violation to avoid infilling of r	elevant puddles, and educate								
the EMC on May 16, 2018. users as to how the	ey are supposed to coordinate								
with Camp Edward	ds before taking actions outside								
of their training pl	an while in the Reserve.								
TY 2017 None									
TY 2016 General Eight thousand paintball Unit soldiers clean	ed and cleared the area of								
Performance rounds were fired by a unit debris, discussion a	of the seriousness of the								
Standard on the IMT range (Dig Site 3) violation with the C	Unif Commander and fold of								
coordination. The MAARNG train with any una	pproved munition.								
forwarded a formal notice Camp Edwards sto	aff conducted a Range Officer								
of violation to the EMC on in Charge and Ra	nge Safety brief audit to								
November 9, 2015. validate content a	nd effectiveness.								
Range Control stat	ff will conduct assessments of								
units while they are	e training in the Reserve to								
ensure activities at	re within established								
TV 2015 Vehicle A nickup truck was driven Camp Edwards st	aff conducted a Panao Officer								
Performance into, off road, and placed in in Charge and Ra	nae Safety brief audit to								
Standard EPS Training Area BA-7 as a validate content a	nd effectiveness.								
temporary training aid. The Range Control sta	ff will conduct assessments of								
(EPS 17) MAARNG forwarded a units while they are	e training in the Reserve to								
formal notice of violation to ensure activities an	re within established								
the EMC on June 5, 2015. performance stand	dards.								
TY 2014 None									
TV 2012 Swall Arms On Neversher 7, 2011 the The MAAADNC sub	 witted a Deenenee Daaket te								
Panae EPS EMC issued a notice for the EMC in early I	December 2011 which included								
failure to remove water from 1) a Notification P	Protocol should it not be able to								
(EPS 19) bullet traps on all three comply with a reg	uirement of the OMMPs; 2) a								
active small arms ranges STAPP [™] Range T	arp Cover Project Description;								
within the prescribed time 3) Water Remove	al Contracting and Budgeting								
periods on multiple occasions provisions; 4) cre	ation of a Camp Edwards								
during TY 2011. The EPA Sustainable Range	Program Working Group;								
also cited the MAARNG for and 5) a Standar	d Operating Procedure for								
failure. and Inspections	ange maintenance Proceaures								

EPS VIOLATIONS									
		HISTORY							
TRAINING YFAR									
			Action						
TY 2011	Wetlands & Surface Water EPS (EPS 2)	On May 17, 2011 military vehicles (Humvees) were driven into an off limits area within 100 feet of Donnelly Pond in the B 8 Training	The using unit notified Range Control and the EMC's Environmental Officer, who was present at Range Control when the using unit reported the violation.						
	& Compared theory	Area.	The MAARNG reestablished the seasonal road						
	and Access EPS (EPS 18)	On the same date, Humvees were driven on a seasonably restricted road in the B 8 Training Area.	in the B 8 Training Area, revisited all seasonal road closure areas to ensure road blocks and proper signage was in place, and conducted a debriefing by Range Control of the involved unit.						
TY 2010	None								
TY 2009	Small Arms Range EPS (EPS 19)	On November 17, 2008 a contractor conducting maintenance on the STAPP TM system at Tango Range did not use secondary containment or take other steps to prevent a release of contaminated media to the environment.	The MAARNG ordered the contractor to shut down its operations and the MAARNG conducted response actions to remove contaminated debris and soil. In addition, the MAARNG completed the following four additional actions required by the Notice of Noncompliance: 1. Scheduled and attended a follow-up meeting to discuss steps to avoid future incidents of this type. 2. Made revisions to the Tango, Juliet & Kilo Range OMMP plans to prevent similar releases and non-compliance. 3. Conducted confirmatory soil sampling to document that the release of metals was fully addressed. 4. Provided documentation of appropriate management and disposition of contaminated soil and debris.						
TY 2008	Wetlands and Surface Water EPS (EPS 2)	Part of the old M Range training area and associated road network near Bypass Bog were not restricted on April 5 th and 6 th , 2008, thus allowing a unit to use vehicles within 500 feet of the wetland during the restricted March 1 – June 15 timeframe.	The site was assessed for long-term training needs, and an appropriate update was made to the range packet to ensure positive management of the site.						
TY 2007	None								

EPS VIOLATIONS								
		HISTORY						
	REPORTED		CORRECTIVE					
TY 2006	General	An Army Reserve unit	Implemented four new procedures:					
11 2000	Performance Standard	An Army Reserve unit training on Camp Edwards fired approximately 2,000 rounds of lead ammunition on J Range during a training weekend on October 15 – 16, 2005.	 Units must provide a copy of their ammunition request to Range Control prior to firing so that Range Control can track what ammunition has been drawn from the Ammunition Supply Point. If lead ammunition is on the request form, Range Control will not let them fire on an outdoor range. Units cannot draw lead ammunition from the Ammunition Supply Point unless they have a confirmation letter that the Coast Guard indoor range facility is reserved for their use. A statement was added in the Range Packet – non-lead ammunition only. Signs were posted at all outdoor ranges indicating "no lead firing." (Note: This procedure has been modified to accommodate the firing of lead ammunition at Tango Range that was approved by the EPA and EMC in July 2007.) 					
TY 2005	Wetlands EPS (EPS 2)	Positive controls to ensure certain roads were closed to vehicle traffic during the March 1 – June 15 timeframe were not in place until late March or early April.	The MAARNG placed road barriers with signage, closed existing gates, and strung chains across roads accordingly.					
TY 2005	Rare Species EPS (EPS 3)	Work commenced on a project, after the project had been revised, to upgrade the Sierra East / Sierra West (SE/SW) ranges without the required notification, review and approval of the project by the Massachusetts NHESP.	The MAARNG halted the work, completed a revised environmental review, and a project filing was submitted to NHESP for review. NHESP subsequently approved the project with several conditions.					
TY 2004	None							
TY 2003	None							
11 2002	None							